ﻻ يوجد ملخص باللغة العربية
We present a comprehensive new global QCD analysis of polarized inclusive deep-inelastic scattering, including the latest high-precision data on longitudinal and transverse polarization asymmetries from Jefferson Lab and elsewhere. The analysis is performed using a new iterative Monte Carlo fitting technique which generates stable fits to polarized parton distribution functions (PDFs) with statistically rigorous uncertainties. Inclusion of the Jefferson Lab data leads to a reduction in the PDF errors for the valence and sea quarks, as well as in the gluon polarization uncertainty at $x gtrsim 0.1$. The study also provides the first determination of the flavor-separated twist-3 PDFs and the $d_2$ moment of the nucleon within a global PDF analysis.
We perform a comprehensive new Monte Carlo analysis of high-energy lepton-lepton, lepton-hadron and hadron-hadron scattering data to simultaneously determine parton distribution functions (PDFs) in the proton and parton to hadron fragmentation functi
We explore connections between two common methods for quantifying the uncertainty in parton distribution functions (PDFs), based on the Hessian error matrix and Monte-Carlo sampling. CT14 parton distributions in the Hessian representation are convert
We present the first Monte Carlo based global QCD analysis of spin-averaged and spin-dependent parton distribution functions (PDFs) that includes nucleon isovector matrix elements in coordinate space from lattice QCD. We investigate the degree of uni
We perform the first iterative Monte Carlo (IMC) analysis of fragmentation functions constrained by all available data from single-inclusive $e^+ e^-$ annihilation into pions and kaons. The IMC method eliminates potential bias in traditional analyses
We investigate the predictive power of transverse-momentum-dependent (TMD) distributions as a function of the light-cone momentum fraction $x$ and the hard scale $Q$ defined by the process. We apply the saddle point approximation to the unpolarized q