ﻻ يوجد ملخص باللغة العربية
In the present paper we report the discovery of a new hot Jupiter, EPIC211089792 b, first detected by the Super-WASP observatory and then by the K2 space mission during its campaign 4. The planet has a period of 3.25d, a mass of 0.73 +/- 0.04 Mjup, and a radius of 1.19 +/- 0.02 Rjup. The host star is a relatively bright (V=12.5) G7 dwarf with a nearby K5V companion. Based on stellar rotation and the abundance of Lithium, we find that the system might be as young as about 450 Myr. The observation of the Rossiter-McLaughlin effect shows the planet is aligned with respect to the stellar spin. Given the deep transit (20mmag), the magnitude of the star and the presence of a nearby stellar companion, the planet is a good target for both space- and ground-based transmission spectroscopy, in particular in the near-infrared where the both stars are relatively bright.
We report the discovery of NGTS-2b, an inflated hot-Jupiter transiting a bright F5V star (2MASS J14202949-3112074; $T_{rm eff}$=$6478^{+94}_{-89}$ K), discovered as part of the Next Generation Transit Survey (NGTS). The planet is in a P=4.51 day orbi
We present the discovery of a hot Jupiter transiting an F star in a close visual (0.3 sky projected angular separation) binary system. The dilution of the host stars light by the nearly equal magnitude stellar companion (~ 0.5 magnitudes fainter) sig
We hypothesize that hot Jupiters with inflated sizes represent a separate planet formation channel,the merging of two low-mass stars. We show that the abundance and properties of W UMa stars and low mass detached binaries are consistent with their be
We report the discovery by the HATSouth survey of HATS-3b, a transiting extrasolar planet orbiting a V=12.4 F-dwarf star. HATS-3b has a period of P = 3.5479d, mass of Mp = 1.07MJ, and radius of Rp = 1.38RJ. Given the radius of the planet, the brightn
We report the discovery and characterisation of WASP-180Ab, a hot Jupiter confirmed by the detection of its Doppler shadow and by measuring its mass using radial velocities. We find the 0.9 $pm$ 0.1 $M_{rm Jup}$, 1.24 $pm$ 0.04 $R_{rm Jup}$ planet to