ترغب بنشر مسار تعليمي؟ اضغط هنا

Locally-Supervised Deep Hybrid Model for Scene Recognition

266   0   0.0 ( 0 )
 نشر من قبل Weilin Huang
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Convolutional neural networks (CNN) have recently achieved remarkable successes in various image classification and understanding tasks. The deep features obtained at the top fully-connected layer of the CNN (FC-features) exhibit rich global semantic information and are extremely effective in image classification. On the other hand, the convolutional features in the middle layers of the CNN also contain meaningful local information, but are not fully explored for image representation. In this paper, we propose a novel Locally-Supervised Deep Hybrid Model (LS-DHM) that effectively enhances and explores the convolutional features for scene recognition. Firstly, we notice that the convolutional features capture local objects and fine structures of scene images, which yield important cues for discriminating ambiguous scenes, whereas these features are significantly eliminated in the highly-compressed FC representation. Secondly, we propose a new Local Convolutional Supervision (LCS) layer to enhance the local structure of the image by directly propagating the label information to the convolutional layers. Thirdly, we propose an efficient Fisher Convolutional Vector (FCV) that successfully rescues the orderless mid-level semantic information (e.g. objects and textures) of scene image. The FCV encodes the large-sized convolutional maps into a fixed-length mid-level representation, and is demonstrated to be strongly complementary to the high-level FC-features. Finally, both the FCV and FC-features are collaboratively employed in the LSDHM representation, which achieves outstanding performance in our experiments. It obtains 83.75% and 67.56% accuracies respectively on the heavily benchmarked MIT Indoor67 and SUN397 datasets, advancing the stat-of-the-art substantially.



قيم البحث

اقرأ أيضاً

Nowadays it is prevalent to take features extracted from pre-trained deep learning models as image representations which have achieved promising classification performance. Existing methods usually consider either object-based features or scene-based features only. However, both types of features are important for complex images like scene images, as they can complement each other. In this paper, we propose a novel type of features -- hybrid deep features, for scene images. Specifically, we exploit both object-based and scene-based features at two levels: part image level (i.e., parts of an image) and whole image level (i.e., a whole image), which produces a total number of four types of deep features. Regarding the part image level, we also propose two new slicing techniques to extract part based features. Finally, we aggregate these four types of deep features via the concatenation operator. We demonstrate the effectiveness of our hybrid deep features on three commonly used scene datasets (MIT-67, Scene-15, and Event-8), in terms of the scene image classification task. Extensive comparisons show that our introduced features can produce state-of-the-art classification accuracies which are more consistent and stable than the results of existing features across all datasets.
We present a deep generative scene modeling technique for indoor environments. Our goal is to train a generative model using a feed-forward neural network that maps a prior distribution (e.g., a normal distribution) to the distribution of primary obj ects in indoor scenes. We introduce a 3D object arrangement representation that models the locations and orientations of objects, based on their size and shape attributes. Moreover, our scene representation is applicable for 3D objects with different multiplicities (repetition counts), selected from a database. We show a principled way to train this model by combining discriminator losses for both a 3D object arrangement representation and a 2D image-based representation. We demonstrate the effectiveness of our scene representation and the deep learning method on benchmark datasets. We also show the applications of this generative model in scene interpolation and scene completion.
Scene recognition is a fundamental task in robotic perception. For human beings, scene recognition is reasonable because they have abundant object knowledge of the real world. The idea of transferring prior object knowledge from humans to scene recog nition is significant but still less exploited. In this paper, we propose to utilize meaningful object representations for indoor scene representation. First, we utilize an improved object model (IOM) as a baseline that enriches the object knowledge by introducing a scene parsing algorithm pretrained on the ADE20K dataset with rich object categories related to the indoor scene. To analyze the object co-occurrences and pairwise object relations, we formulate the IOM from a Bayesian perspective as the Bayesian object relation model (BORM). Meanwhile, we incorporate the proposed BORM with the PlacesCNN model as the combined Bayesian object relation model (CBORM) for scene recognition and significantly outperforms the state-of-the-art methods on the reduced Places365 dataset, and SUN RGB-D dataset without retraining, showing the excellent generalization ability of the proposed method. Code can be found at https://github.com/hszhoushen/borm.
The technological advancement and sophistication in cameras and gadgets prompt researchers to have focus on image analysis and text understanding. The deep learning techniques demonstrated well to assess the potential for classifying text from natura l scene images as reported in recent years. There are variety of deep learning approaches that prospects the detection and recognition of text, effectively from images. In this work, we presented Arabic scene text recognition using Convolutional Neural Networks (ConvNets) as a deep learning classifier. As the scene text data is slanted and skewed, thus to deal with maximum variations, we employ five orientations with respect to single occurrence of a character. The training is formulated by keeping filter size 3 x 3 and 5 x 5 with stride value as 1 and 2. During text classification phase, we trained network with distinct learning rates. Our approach reported encouraging results on recognition of Arabic characters from segmented Arabic scene images.
3D action recognition is referred to as the classification of action sequences which consist of 3D skeleton joints. While many research work are devoted to 3D action recognition, it mainly suffers from three problems: highly complicated articulation, a great amount of noise, and a low implementation efficiency. To tackle all these problems, we propose a real-time 3D action recognition framework by integrating the locally aggregated kinematic-guided skeletonlet (LAKS) with a supervised hashing-by-analysis (SHA) model. We first define the skeletonlet as a few combinations of joint offsets grouped in terms of kinematic principle, and then represent an action sequence using LAKS, which consists of a denoising phase and a locally aggregating phase. The denoising phase detects the noisy action data and adjust it by replacing all the features within it with the features of the corresponding previous frame, while the locally aggregating phase sums the difference between an offset feature of the skeletonlet and its cluster center together over all the offset features of the sequence. Finally, the SHA model which combines sparse representation with a hashing model, aiming at promoting the recognition accuracy while maintaining a high efficiency. Experimental results on MSRAction3D, UTKinectAction3D and Florence3DAction datasets demonstrate that the proposed method outperforms state-of-the-art methods in both recognition accuracy and implementation efficiency.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا