ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray spectral studies of TeV gamma-ray emitting blazars

115   0   0.0 ( 0 )
 نشر من قبل Alicja Wierzcholska
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is a summary of the X-ray spectral studies of 29 TeV $gamma$-ray emitting blazars observed with Swift/XRT, especially focusing on sources for which X-ray regime allows to study the low and the high energy ends of the particle distributions function. Variability studies require simultaneous coverage, ideally sampling different flux states of each source. This is achieved using X-ray observations by disentangling the high-energy end of the synchrotron emission and the low-energy end of the Compton emission, which are produced by the same electron population. We focused on a sample of 29 TeV gamma-ray emitting blazars with the best signal-to-noise X-ray observations collected with Swift/XRT in the energy range of 0.3-10 keV during 10 years of Swift/XRT operations. We investigate the X-ray spectral shapes and the effects of different corrections for neutral hydrogen absorption and decompose the synchrotron and inverse Compton components. In the case of 5 sources (3C 66A, S5 0716+714, W Comae, 4C +21.35 and BL Lacertae) a superposition of both components is observed in the X-ray band, permitting simultaneous, time resolved studies of both ends of the electron distribution. The analysis of multi-epoch observations revealed that the break energy of X-ray spectrum varies only by a small factor with flux changes. Flux variability is more pronounced in the synchrotron domain (high-energy end of the electron distribution) than in the Compton domain (low energy end of the electron distribution). The spectral shape of the Compton domain is stable, while the flux of the synchrotron domain is variable. These changes cannot be described by simple variations of the cut-off energy, suggesting that the high-energy end of the electron distribution is not generally well-described by cooling only.



قيم البحث

اقرأ أيضاً

The parsec-scale radio properties of blazars detected by the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have been investigated using observations with the Very Long Baseline Array (VLBA). Comparisons between LAT and non-L AT detected samples were made using contemporaneous data. In total, 232 sources were used in the LAT-detected sample. This very large, radio flux-limited sample of active galactic nuclei (AGN) provides insights into the mechanism that produces strong gamma-ray emission. It has been found that LAT-detected BL Lac objects are very similar to the non-LAT BL Lac objects in most properties, although LAT BL Lac objects may have longer jets. The LAT flat spectrum radio quasars (FSRQs) are significantly different from non-LAT FSRQs and are likely extreme members of the FSRQ population. Contemporaneous observations showed a strong correlation, whereas no correlation is found using archival radio data. Most of the differences between the LAT and non-LAT populations are related to the cores of the sources, indicating that the gamma-ray emission may originate near the base of the jets (i.e., within a few pc of the central engine). There is some indication that LAT-detected sources may have larger jet opening angles than the non-LAT sources. Strong core polarization is significantly more common among the LAT sources, suggesting that gamma-ray emission is related to strong, uniform magnetic fields at the base of the jets of the blazars. Observations of sources in two epochs indicate that core fractional polarization was higher when the objects were detected by the LAT. Included in our sample are several non-blazar AGN such as 3C84, M82, and NGC 6251.
This article reports the results of X-ray studies of the extended TeV $gamma$-ray source VER J2019+368. Suzaku observations conducted to examine properties of the X-ray pulsar wind nebula (PWN) around PSR J2021+3651 revealed that the western region o f the X-ray PWN has a source extent of $15 times 10$ with the major axis oriented to that of the TeV emission. The PWN-west spectrum was closely fitted by a power-law for absorption at $N({rm H}) = (8.2^{+1.3}_{-1.1}) times 10^{21}~{rm cm^{-2}}$ and a photon index of $Gamma = 2.05pm0.12$, with no obvious change in the index within the X-ray PWN. The measured X-ray absorption indicates that the distance to the source is much less than $10~{rm kpc}$ inferred by radio data. Aside from the PWN, no extended emission was observed around PSR J2021+3651 even by Suzaku. Archival data from the XMM-Newton were also analyzed to complement the Suzaku observations, indicating that the eastern region of the X-ray PWN has a similar spectrum ($N(rm H)=(7.5 pm 0.9) times 10^{21}~{rm cm^{-2}}$ and $Gamma=2.03 pm 0.10$) and source extent up to at least $12$ along the major axis. The lack of significant change in the photon index and the source extent in X-ray are used to constrain the advection velocity or the diffusion coefficient for accelerated X-ray-producing electrons. A mean magnetic field of ${sim}3~mu{rm G}$ is required to account for the measured X-ray spectrum and reported TeV $gamma$-ray spectrum. A model calculation of synchrotron radiation and inverse Compton scattering was able to explain ${sim}80%$ of the reported TeV flux, indicating that the X-ray PWN is a major contributor of VER J2019+368.
We present $gamma$-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 $gamma$-ray bright blazars over four years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite , and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their $gamma$-ray behavior. We derive $gamma$-ray, X-ray, and optical spectral indices, $alpha_gamma$, $alpha_X$, and $alpha_o$, respectively ($F_ upropto u^alpha$), and construct spectral energy distributions (SEDs) during quiescent and active states. We analyze the relationships between different spectral indices, blazar classes, and activity states. We find (i) significantly steeper $gamma$-ray spectra of FSRQs than for BL Lacs during quiescent states, but a flattening of the spectra for FSRQs during active states while the BL Lacs show no significant change; (ii) a small difference of $alpha_X$ within each class between states, with BL Lac X-ray spectra significantly steeper than in FSRQs; (iii) a highly peaked distribution of X-ray spectral slopes of FSRQs at $sim-$0.60, but a very broad distribution of $alpha_X$ of BL Lacs during active states; (iv) flattening of the optical spectra of FSRQs during quiescent states, but no statistically significant change of $alpha_o$ of BL Lacs between states; and (v) a positive correlation between optical and $gamma$-ray spectral slopes of BL Lacs, with similar values of the slopes. We discuss the findings with respect to the relative prominence of different components of high-energy and optical emission as the flux state changes.
156 - Qi Feng 2021
The highest-energy blazars exhibit non-thermal radiation extending beyond 1 TeV with high luminosities and strong variabilities, indicating extreme particle acceleration in their relativistic jets. The gamma-ray spectra of blazars contain information about the distribution and cooling processes of high-energy particles in jets, the extragalactic background light between the source and the observer, and potentially, the environment of the gamma-ray emitting region and exotic physics that may modify the opacity of the universe to gamma rays. We use data from Fermi-LAT and VERITAS to study the variability and spectra of a sample of TeV blazars across a wide range of gamma-ray energies, taking advantage of more than ten years of data from both instruments. The variability in both the GeV and TeV gamma-ray bands is investigated using a Bayesian blocks method to identify periods with a steady flux, during which the average gamma-ray spectra, after correcting for the pair absorption effect from propagation, can be parameterized without the risk of mixing different flux states. We report on the search for intrinsic spectral curvature and spectral variability in these blazars, in an effort to understand the physical mechanisms behind the high-energy gamma-ray spectra of TeV blazars.
We have examined 40 NuSTAR light curves (LCs) of five TeV emitting high synchrotron peaked blazars: 1ES 0229+200, Mrk 421, Mrk 501, 1ES 1959+650 and PKS 2155-304. Four of the blazars showed intraday variability in the NuSTAR energy range of 3-79 keV. Using an auto correlation function analysis we searched for intraday variability timescales in these LCs and found indications of several between 2.5 and 32.8 ks in eight LCs of Mrk 421, a timescale around 8.0 ks for one LC of Mrk 501, and timescales of 29.6 ks and 57.4 ks in two LCs of PKS 2155-304. The other two blazars LCs do not show any evidence for intraday variability timescales shorter than the lengths of those observations, however, the data was both sparser and noisier, for them. We found positive correlations with zero lag between soft (3-10 keV) and hard (10-79 keV) bands for most of the LCs, indicating that their emissions originate from the same electron population. We examined spectral variability using a hardness ratio analysis and noticed a general harder-when-brighter behavior. The 22 LCs of Mrk 421 observed between July 2012 and April 2013 show that this source was in a quiescent state for an extended period of time and then underwent an unprecedented double peaked outburst while monitored on a daily basis during 10 - 16 April 2013. We briefly discuss models capable of explaining these blazar emissions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا