ﻻ يوجد ملخص باللغة العربية
Stochastic processes with absorbing states feature remarkable examples of non-equilibrium universal phenomena. While a broad understanding has been progressively established in the classical regime, relatively little is known about the behavior of these non-equilibrium systems in the presence of quantum fluctuations. Here we theoretically address such a scenario in an open quantum spin model which in its classical limit undergoes a directed percolation phase transition. By mapping the problem to a non-equilibrium field theory, we show that the introduction of quantum fluctuations stemming from coherent, rather than statistical, spin-flips alters the nature of the transition such that it becomes first-order. In the intermediate regime, where classical and quantum dynamics compete on equal terms, we highlight the presence of a bicritical point with universal features different from the directed percolation class in low dimension. We finally propose how this physics could be explored within gases of interacting atoms excited to Rydberg states.
The effects of quenched disorder on nonequilibrium phase transitions in the directed percolation universality class are revisited. Using a strong-disorder energy-space renormalization group, it is shown that for any amount of disorder the critical be
Phase transitions in dissipative quantum systems are intriguing because they are induced by the interplay between coherent quantum and incoherent classical fluctuations. Here, we investigate the crossover from a quantum to a classical absorbing phase
We introduce and solve a model of hardcore particles on a one dimensional periodic lattice which undergoes an active-absorbing state phase transition at finite density. In this model an occupied site is defined to be active if its left neighbour is o
We investigate the behavior of nonequilibrium phase transitions under the influence of disorder that locally breaks the symmetry between two symmetrical macroscopic absorbing states. In equilibrium systems such random-field disorder destroys the phas
We study diffusion of hardcore particles on a one dimensional periodic lattice subjected to a constraint that the separation between any two consecutive particles does not increase beyond a fixed value $(n+1);$ initial separation larger than $(n+1)$