ترغب بنشر مسار تعليمي؟ اضغط هنا

The feeble giant. Discovery of a large and diffuse Milky Way dwarf galaxy in the constellation of Crater

198   0   0.0 ( 0 )
 نشر من قبل Gabriel Torrealba
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We announce the discovery of the Crater 2 dwarf galaxy, identified in imaging data of the VST ATLAS survey. Given its half-light radius of ~1100 pc, Crater 2 is the fourth largest dwarf in the Milky Way, surpassed only by the LMC, SMC and the Sgr dwarf. With a total luminosity of $M_Vapprox-8$, this satellite galaxy is also one of the lowest surface brightness dwarfs. Falling under the nominal detection boundary of 30 mag arcsec$^{-2}$, it compares in nebulosity to the recently discovered Tuc 2 and Tuc IV and UMa II. Crater 2 is located ~120 kpc from the Sun and appears to be aligned in 3-D with the enigmatic globular cluster Crater, the pair of ultra-faint dwarfs Leo IV and Leo V and the classical dwarf Leo II. We argue that such arrangement is probably not accidental and, in fact, can be viewed as the evidence for the accretion of the Crater-Leo group.



قيم البحث

اقرأ أيضاً

We announce the discovery of a new Galactic companion found in data from the ESO VST ATLAS survey, and followed up with deep imaging on the 4m William Herschel Telescope. The satellite is located in the constellation of Crater (the Cup) at a distance of $sim$ 170 kpc. Its half-light radius is $r_h=30$ pc and its luminosity is $M_V=-5.5$. The bulk of its stellar population is old and metal-poor. We would probably have classified the newly discovered satellite as an extended globular cluster were it not for the presence of a handful of Blue Loop stars and a sparsely populated Red Clump. The existence of the core helium burning population implies that star-formation occurred in Crater perhaps as recently as 400 Myr ago. No globular cluster has ever accomplished the feat of prolonging its star-formation by several Gyrs. Therefore, if our hypothesis that the blue bright stars in Crater are Blue Loop giants is correct, the new satellite should be classified as a dwarf galaxy with unusual properties. Note that only ten degrees to the North of Crater, two ultra-faint galaxies Leo IV and V orbit the Galaxy at approximately the same distance. This hints that all three satellites may once have been closely associated before falling together into the Milky Way halo.
Time series observations of a single dithered field centered on the diffuse dwarf satellite galaxy Crater II were obtained with the Dark Energy Camera (DECam) at the 4m Blanco Telescope at Cerro Tololo Inter-American Observatory, Chile, uniformly cov ering up to two half-light radii. Analysis of the $g$ and $i$ time series results in the identification and characterization of 130 periodic variable stars, including 98 RR Lyrae stars, 7 anomalous Cepheids, and 1 SX Phoenicis star belonging to the Crater II population, and 24 foreground variables of different types. Using the large number of ab-type RR Lyrae stars present in the galaxy, we obtained a distance modulus to Crater II of $(m-M)_0=20.333pm 0.004$ (stat) $pm 0.07$ (sys). The distribution of the RR Lyrae stars suggests an elliptical shape for Crater II, with an ellipticity of 0.24 and a position angle of $153^circ$. From the RR Lyrae stars we infer a small metallicity dispersion for the old population of Crater II of only 0.17 dex. There are hints that the most metal-poor stars in that narrow distribution have a wider distribution across the galaxy, while the slightly more metal rich part of the population is more centrally concentrated. Given the features in the color-magnitude diagram of Crater II, the anomalous Cepheids in this galaxy must have formed through a binary evolution channel of an old population.
We present a deep Blanco/DECam colour-magnitude diagram (CMD) for the large but very diffuse Milky Way satellite dwarf galaxy Crater II. The CMD shows only old stars with a clearly bifurcated subgiant branch (SGB) that feeds a narrow red giant branch . The horizontal branch (HB) shows many RR Lyrae and red HB stars. Comparing the CMD with [Fe/H] = -2.0 and [$alpha$/Fe] = +0.3 alpha-enhanced BaSTI isochrones indicates a mean age of 12.5 Gyr for the main event and a mean age of 10.5 Gyr for the brighter SGB. With such multiple star formation events Crater II shows similarity to more massive dwarfs that have intermediate age populations, however for Crater II there was early quenching of the star formation and no intermediate age or younger stars are present. The spatial distribution of Crater II stars overall is elliptical in the plane of the sky, the detailed distribution shows a lack of strong central concentration, and some inhomogeneities. The 10.5 Gyr subgiant and upper main sequence stars show a slightly higher central concentration when compared to the 12.5 Gyr population. Matching to Gaia DR2 we find the proper motion of Crater II: $mu_{alpha}cos delta$=-0.14 $pm$ 0.07 , $mu_{delta}$=-0.10 $pm$ 0.04 mas yr$^{-1}$, approximately perpendicular to the semi-major axis of Crater II. Our results provide constraints on the star formation and chemical enrichment history of Crater II, but cannot definitively determine whether or not substantial mass has been lost over its lifetime.
54 - M.J. Irwin 2007
In this Letter, we announce the discovery of a new dwarf galaxy, Leo T, in the Local Group. It was found as a stellar overdensity in the Sloan Digital Sky Survey Data Release 5 (SDSS DR5). The color-magnitude diagram of Leo T shows two well-defined f eatures, which we interpret as a red giant branch and a sequence of young, massive stars. As judged from fits to the color-magnitude diagram, it lies at a distance of about 420 kpc and has an intermediate-age stellar population with a metallicity of [Fe/H]= -1.6, together with a young population of blue stars of age of 200 Myr. There is a compact cloud of neutral hydrogen with mass roughly 10^5 solar masses and radial velocity 35 km/s coincident with the object visible in the HIPASS channel maps. Leo T is the smallest, lowest luminosity galaxy found to date with recent star-formation. It appears to be a transition object similar to, but much lower luminosity than, the Phoenix dwarf.
Stellar streams produced from dwarf galaxies provide direct evidence of the hierarchical formation of the Milky Way. Here, we present the first comprehensive study of the LMS-1 stellar stream, that we detect by searching for wide streams in the Gaia EDR3 dataset using the STREAMFINDER algorithm. This stream was recently discovered by Yuan et al. (2020). We detect LMS-1 as a $60deg$ long stream to the north of the Galactic bulge, at a distance of $sim 20$ kpc from the Sun, together with additional components that suggest that the overall stream is completely wrapped around the inner Galaxy. Using spectroscopic measurements from LAMOST, SDSS and APOGEE, we infer that the stream is very metal poor (${rm langle [Fe/H]rangle =-2.1}$) with a significant metallicity dispersion ($sigma_{rm [Fe/H]}=0.4$), and it possesses a large radial velocity dispersion (${rm sigma_v=20 pm 4,km,s^{-1}}$). These estimates together imply that LMS-1 is a dwarf galaxy stream. The orbit of LMS-1 is close to polar, with an inclination of $75deg$ to the Galactic plane. Both the orbit and metallicity of LMS-1 are remarkably similar to the globular clusters NGC 5053, NGC 5024 and the stellar stream Indus. These findings make LMS-1 an important contributor to the stellar population of the inner Milky Way halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا