ﻻ يوجد ملخص باللغة العربية
We survey the properties of stars destroyed in TDEs as a function of BH mass, stellar mass and evolutionary state, star formation history and redshift. For Mbh<10^7Msun, the typical TDE is due to a M*~0.3Msun M-dwarf, although the mass function is relatively flat for $M*<Msun. The contribution from older main sequence stars and sub-giants is small but not negligible. From Mbh~10^7.5-10^8.5Msun, the balance rapidly shifts to higher mass stars and a larger contribution from evolved stars, and is ultimately dominated by evolved stars at higher BH masses. The star formation history has little effect until the rates are dominated by evolved stars. TDE rates should decline very rapidly towards higher redshifts. The volumetric rate of TDEs is very high because the BH mass function diverges for low masses. However, any emission mechanism which is largely Eddington-limited for low BH masses suppresses this divergence in any observed sample and leads to TDE samples dominated by Mbh~10^6.0-10^7.5Msun BHs with roughly Eddington peak accretion rates. The typical fall back time is relatively long, with 16% having Tfb<10^(-1) years (37 days), and 84% having longer time scales. Many residual rate discrepancies can be explained if surveys are biased against TDEs with these longer Tfb, which seems very plausible if Tfb has any relation to the transient rise time. For almost any BH mass function, systematic searches for fainter, faster time scale TDEs in smaller galaxies, and longer time scale TDEs in more massive galaxies are likely to be rewarded.
Aims. We investigate the evolution of X-ray selected tidal disruption events. Methods. New events are found in near-real time data from XMM-Newton slews and are monitored by multi-wavelength facilities. Results. In August 2016, X-ray emission was det
Multiwavelength flares from tidal disruption and accretion of stars can be used to find and study otherwise dormant massive black holes in galactic nuclei. Previous well-monitored candidate flares are short-lived, with most emission confined to withi
We present radio observations of the tidal disruption event candidate (TDE) XMMSL1 J0740$-$85 spanning 592 to 875 d post X-ray discovery. We detect radio emission that fades from an initial peak flux density at 1.6 GHz of $1.19pm 0.06$ mJy to $0.65pm
The ultrasoft X-ray flare 2XMMi J184725.1-631724 was serendipitously detected in two XMM-Newton observations in 2006 and 2007, with a peak luminosity of 6X10^43 erg/s. It was suggested to be a tidal disruption event (TDE) because its position is cons
We study the properties of tidal disruption event (TDE) host galaxies in the context of a catalog of ~500,000 galaxies from the Sloan Digital Sky Survey. We explore whether selection effects can account for the overrepresentation of TDEs in E+A/post-