ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Hydrogen Absorption from the Halo of a z ~ 0.4 Galaxy

63   0   0.0 ( 0 )
 نشر من قبل Sowgat Muzahid
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lyman- and Werner-band absorption of molecular hydrogen (H$_2$) is detected in $sim$50% of low redshift ($z<1$) DLAs/sub-DLAs with $N$(H$_2$) > 10$^{14.4}$ cm$^{-2}$. However the true origin(s) of the H$_2$ bearing gas remain elusive. Here we report a new detection of an H$_{2}$ absorber at $z=$ 0.4298 in the HST/COS spectra of quasar PKS 2128-123. The total $N$(HI) of 10$^{19.50pm0.15}$ cm$^{-2}$ classifies the absorber as a sub-DLA. H$_{2}$ absorption is detected up to the $J=3$ rotational level with a total $log N$(H$_{2}$) = 16.36$pm$0.08 corresponding to a molecular fraction of log $f$(H$_{2}$) = $-$2.84$pm$0.17. The excitation temperature of $T_{ex}$ = 206$pm$6K indicates the presence of cold gas. Using detailed ionization modelling we obtain a near-solar metallicity (i.e., [O/H]= $-$0.26$pm$0.19) and a dust-to-gas ratio of $log kappa sim -0.45$ for the H$_{2}$ absorbing gas. The host-galaxy of the sub-DLA is detected at an impact parameter of $rho sim$ 48 kpc with an inclination angle of $i sim$ 48 degree and an azimuthal angle of $Phi sim$ 15 degree with respect to the QSO sightline. We show that co-rotating gas in an extended disk cannot explain the observed kinematics of Mg II absorption. Moreover, the inferred high metallicity is not consistent with the scenario of gas accretion. An outflow from the central region of the host-galaxy, on the other hand, would require a large opening angle (i.e., 2$theta>$150 degree), much larger than the observed outflow opening angles in Seyfert galaxies, in order to intercept the QSO sightline. We thus favor a scenario in which the H$_2$ bearing gas is stemming from a dwarf-satellite galaxy, presumably via tidal and/or ram-pressure stripping. Detection of a dwarf galaxy candidate in the HST/WFPC2 image at an impact parameter of $sim$12 kpc reinforces such an idea.



قيم البحث

اقرأ أيضاً

244 - Y. Yang 2009
Spiral galaxies dominate the local galaxy population. Disks are known to be fragile with respect to collisions. Thus it is worthwhile to probe under which conditions a disk can possibly survive such interactions. We present a detailed morpho-kinemati cs study of a massive galaxy with two nuclei, J033210.76--274234.6, at z=0.4. The morphological analysis reveals that the object consists of two bulges and a massive disk, as well as a faint blue ring. Combining the kinematics with morphology we propose a near-center collision model to interpret the object. We find that the massive disk is likely to have survived the collision of galaxies with an initial mass ratio of ~4:1. The N-body/SPH simulations show that the collision possibly is a single-shot polar collision with a very small pericentric distance of ~1 kpc and that the remnant of the main galaxy will be dominated by a disk. The results support the disk survival hypothesis. The survival of the disk is related to the polar collision with an extremely small pericentric distance. With the help of N-body/SPH simulations we find the probability of disk survival is quite large regardless whether the two galaxies merge or not.
336 - A. Meiksin 2015
We compare predictions of large-scale cosmological hydrodynamical simulations for neutral hydrogen absorption signatures in the vicinity of 1e11 - 1e12.5 MSun haloes with observational measurements. Two different hydrodynamical techniques and a varie ty of prescriptions for gas removal in high density regions are examined. Star formation and wind feedback play only secondary roles in the HI absorption signatures outside the virial radius, but play important roles within. Accordingly, we identify three distinct gaseous regions around a halo: the virialized region, the mesogalactic medium outside the virial radius arising from the extended haloes of galaxies out to about two turnaround radii, and the intergalactic medium beyond. Predictions for the amount of absorption from the mesogalactic and intergalactic media are robust across different methodologies, and the predictions agree with the amount of absorption observed around star-forming galaxies and QSO host galaxies. Recovering the measured amount of absorption within the virialized region, however, requires either a higher dynamic range in the simulations, additional physics, or both.
We present an HI 21cm absorption study of a sample of 26 radio-loud active galactic nuclei (AGN) at $0.25 < z < 0.4$ carried out with the Karl G. Jansky Very Large Array. Our aim was to study the rate of incidence of HI in various classes of radio AG N, the morphology and kinematics of the HI, and the nature of the interaction between the HI and the radio source. Our sample consists of 14 extended sources and 12 compact sources in the radio-power range 10$^{25.7}$W/Hz$~-~10^{26.5}$W/Hz. We detect HI in 5 sources with a detection rate of $sim$19%, similar to the detection rate at lower redshifts. The rest-frame UV luminosities of most of the sources in the sample, including all the detections, are below the proposed threshold above which the HI is supposed to have been ionised. The optical emission-line spectra show that despite their high radio powers, one-third of the sample, including two detections, are low-ionisation sources. The radio continuum emission from the HI detections is unresolved at kpc scales, but is extended on parsec scales. The detections have complex HI 21cm absorption profiles with FWZI ranging from 60 km/s to 700 km/s and exhibit remarkably high HI column densities in the range 10$^{21}$ cm$^{-2}$ to 10$^{22}$ cm$^{-2}$ for T$_{rm spin}=$100 K and unit covering factor. A modelling of the HI 21cm absorption profiles suggests that in 2 sources the gas is disturbed, and in 3 cases, including the one with disturbed HI, the majority of the absorption is consistent with arising from an HI disc. Though we detect no fast HI outflows, the optical emission lines in the HI detections show the presence of highly disturbed gas in the nuclear region. Since some of our detections are low-ionisation AGN, this disturbance may be caused by the radio jets. Overall, our findings point towards a continuation of the low-$z$ trends in the incidence of HI in radio AGN up to $z sim 0.4$.
127 - Fakhri S. Zahedy 2017
We report the first detection of extended neutral hydrogen (HI) gas in the interstellar medium (ISM) of a massive elliptical galaxy beyond z~0. The observations utilize the doubly lensed images of QSO HE 0047-1756 at z_QSO = 1.676 as absorption-line probes of the ISM in the massive (M_star ~ 10^11 M_sun) elliptical lens at z = 0.408, detecting gas at projected distances of d = 3.3 and 4.6 kpc on opposite sides of the lens. Using the Space Telescope Imaging Spectrograph (STIS), we obtain UV absorption spectra of the lensed QSO and identify a prominent flux discontinuity and associated absorption features matching the Lyman series transitions at z = 0.408 in both sightlines. The HI column density is log N(HI) = 19.6-19.7 at both locations across the lens, comparable to what is seen in 21 cm images of nearby ellipticals. The HI gas kinematics are well-matched with the kinematics of the FeII absorption complex revealed in ground-based echelle data, displaying a large velocity shear of 360 km/s across the galaxy. We estimate an ISM Fe abundance of 0.3-0.4 solar at both locations. Including likely dust depletions increases the estimated Fe abundances to solar or supersolar, similar to those of the hot ISM and stars of nearby ellipticals. Assuming 100% covering fraction of this Fe-enriched gas,we infer a total Fe mass of M_cool(Fe)~(5-8)x10^4 M_sun in the cool ISM of the massive elliptical lens, which is no more than 5% of the total Fe mass observed in the hot ISM.
We report the detection of H2 in a zabs= 0.0963 Damped Lyman-{alpha} (DLA) system towards zem = 0.4716 QSO J1619+3342. This DLA has log N(H I) = 20.55 (0.10), 18.13 < log N(H2) < 18.40, [S/H] = -0.62 (0.13), [Fe/S] = -1.00 (0.17) and the molecular fr action -2.11 < log f(H2) < -1.85. The inferred gas kinetic temperature using the rotational level population is in the range 95 - 132 K. We do not detect C I or C II* absorption from this system. Using R- and V-band deep images we identify a sub-L* galaxy at an impact parameter of 14 kpc from the line of sight, having consistent photometric redshift, as a possible host for the absorber. We use the photoionization code CLOUDY to get the physical conditions in the H2 component using the observational constrains from H2, C I, C II* and Mg I. All the observations can be consistently explained if one or more of the following is true: (i) Carbon is underabundant by more than 0.6 dex as seen in halo stars with Z ~ 0.1 Z_sun, (ii) H I associated with H2 component is less than 50% of the H I measured along the line of sight and (iii) the H2 formation rate on the dust grains is at least a factor two higher than what is typically used in analytic calculations for Milky Way interstellar medium. Even when these are satisfied, the gas kinetic temperature in the models are much lower than what is inferred from the ortho-to-para ratio of the molecular hydrogen. Alternatively the high kinetic temperature could be a consequence of contribution to the gas heating from non-radiative heating processes seen in hydrodynamical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا