ﻻ يوجد ملخص باللغة العربية
Agent technology, a new paradigm in software engineering, has received attention from research and industry since 1990s. However, it is still not used widely to date because it requires expertise on both programming and agent technology; gaps among requirements, agent design, and agent deployment also pose more difficulties. Goal Net methodology attempts to solve these issues with a goal-oriented approach that resembles human behaviours, and an agent designer that supports agent development using this philosophy. However, there are limitations on existing Goal Net Designer, the design and modelling component of the agent designer. Those limitations, including limited access, difficult deployment, inflexibility in user operations, design workflows against typical Goal Net methodology workflows, and lack of data protection, have inhibited widespread adoption of Goal Net methodology. Motivated by this, this book focuses on improvements on Goal Net Designer. In this project, Goal Net Designer is completely re-implemented using new technology with optimised software architecture and design. It allows access from all major desktop operating systems, as well as in web environment via all modern browsers. Enhancements such as refined workflows, model validation tool, access control, team collaboration tool, and link to compiler make Goal Net Designer a fully functional and powerful Integrated Development Environment. User friendliness and usability are greatly enhanced by simplifying users actions to accomplish their tasks. User behaviour logging and quantitative feedback channel are also included to allow Goal Net Designer to continuously evolve with the power of big data analytics in future. To evaluate the new Goal Net Designer, a teachable agent has been developed with the help of Goal Net Designer and the development process is illustrated in a case study.
It has been widely recognized that the performance of a multi-agent system is highly affected by its organization. A large scale system may have billions of possible ways of organization, which makes it impractical to find an optimal choice of organi
In most multiagent applications, communication is essential among agents to coordinate their actions, and thus achieve their goal. However, communication often has a related cost that affects overall system performance. In this paper, we draw inspira
Coordination is one of the essential problems in multi-agent systems. Typically multi-agent reinforcement learning (MARL) methods treat agents equally and the goal is to solve the Markov game to an arbitrary Nash equilibrium (NE) when multiple equili
We present Distributed Simplex Architecture (DSA), a new runtime assurance technique that provides safety guarantees for multi-agent systems (MASs). DSA is inspired by the Simplex control architecture of Sha et al., but with some significant differen
In this paper, we propose an approach for solving an energy-optimal goal assignment problem to generate the desired formation in multi-agent systems. Each agent solves a decentralized optimization problem with only local information about its neighbo