ﻻ يوجد ملخص باللغة العربية
Conventionally, unknown quantum states are characterized using quantum-state tomography based on strong or weak measurements carried out on an ensemble of identically prepared systems. By contrast, the use of protective measurements offers the possibility of determining quantum states from a series of weak, long measurements performed on a single system. Because the fidelity of a protectively measured quantum state is determined by the amount of state disturbance incurred during each protective measurement, it is crucial that the initial quantum state of the system is disturbed as little as possible. Here we show how to systematically minimize the state disturbance in the course of a protective measurement, thus enabling the maximization of the fidelity of the quantum-state measurement. Our approach is based on a careful tuning of the time dependence of the measurement interaction and is shown to be dramatically more effective in reducing the state disturbance than the previously considered strategy of weakening the measurement strength and increasing the measurement time. We describe a method for designing the measurement interaction such that the state disturbance exhibits polynomial decay to arbitrary order in the inverse measurement time $1/T$. We also show how one can achieve even faster, subexponential decay, and we find that it represents the smallest possible state disturbance in a protective measurement. In this way, our results show how to optimally measure the state of a single quantum system using protective measurements.
The uncertainty principle states that a measurement inevitably disturbs the system, while it is often supposed that a quantum system is not disturbed without state change. Korzekwa, Jennings, and Rudolph [Phys. Rev. A 89, 052108 (2014)] pointed out a
The trade-off between the information gain and the state disturbance is derived for quantum operations on a single qubit prepared in a uniformly distributed pure state. The derivation is valid for a class of measures quantifying the state disturbance
We demonstrate a general method to measure the quantum state of an angular momentum of arbitrary magnitude. The (2F+1) x (2F+1) density matrix is completely determined from a set of Stern-Gerlach measurements with (4F+1) different orientations of the
We investigate the optimal tradeoff between information gained about an unknown coherent state and the state disturbance caused by the measurement process. We propose several optical schemes that can enable this task, and we implement one of them, a
Entanglement is a fundamental feature of quantum mechanics, considered a key resource in quantum information processing. Measuring entanglement is an essential step in a wide range of applied and foundational quantum experiments. When a two-particle