ﻻ يوجد ملخص باللغة العربية
The pseudorapidity density (dN/deta) for p+p, p+A and A+A(B) collisions, and the mean multiplicity <Nch> for ee, ep, and p+p collisions, are studied for an inclusive range of beam energies (Root_s). Characteristic scaling patterns are observed for both dN/deta and <Nch>, consistent with a thermal particle production mechanism for the bulk of the soft particles produced in all of these systems. They also validate an essential role for quark participants in these collisions. The scaled values for dN/deta and <Nch> are observed to factorize into contributions which depend on log(Root_s) and the number of nucleon or quark participant pairs (Npp). Quantification of these contributions give expressions which serve to systematize dN/deta and <Nch> measurements spanning nearly four orders of magnitude in Root_s, and to predict their values as a function of Root_s and Npp.
The E12-14-012 experiment, performed in Jefferson Lab Hall A, has collected exclusive electron-scattering data (e,e$^prime$p) in parallel kinematics using natural argon and natural titanium targets. Here, we report the first results of the analysis o
New results are reported from a measurement of $pi^0$ electroproduction near threshold using the $p(e,e^{prime} p)pi^0$ reaction. The experiment was designed to determine precisely the energy dependence of $s-$ and $p-$wave electromagnetic multipoles
Charged hadron production in the $e^{+}e^{-}$ annihilations at 91 to 206 GeV in full phase space and in $overline{p}p$ collisions at 200 to 900~GeV collision energies are studied using non-extensive Tsallis and stochastic Weibull probability distribu
We compiled the systematical measurements of anti-nucleus production in ultra-relativistic heavy ion collisions as well as those in $pp$, $pbar{p}$, $gamma p$ and $e^{+}e^{-}$ at various beam energies. The anti-baryon phase space density inferred fro
We report a measurement of $e^+e^-$ pairs from semileptonic heavy-flavor decays in $p$+$p$ collisions at $sqrt{s_{NN}}=200$~GeV. The $e^+e^-$ pair yield from $bbar{b}$ and $cbar{c}$ is separated by exploiting a double differential fit done simultaneo