ترغب بنشر مسار تعليمي؟ اضغط هنا

Wide-field broadband radio imaging with phased array feeds: a pilot multi-epoch continuum survey with ASKAP-BETA

81   0   0.0 ( 0 )
 نشر من قبل Ian Heywood
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Boolardy Engineering Test Array is a 6 x 12 m dish interferometer and the prototype of the Australian Square Kilometre Array Pathfinder (ASKAP), equipped with the first generation of ASKAPs phased array feed (PAF) receivers. These facilitate rapid wide-area imaging via the deployment of simultaneous multiple beams within a 30 square degree field of view. By cycling the array through 12 interleaved pointing positions and using 9 digitally formed beams we effectively mimic a traditional 1 hour x 108 pointing survey, covering 150 square degrees over 711 - 1015 MHz in 12 hours of observing time. Three such observations were executed over the course of a week. We verify the full bandwidth continuum imaging performance and stability of the system via self-consistency checks and comparisons to existing radio data. The combined three epoch image has arcminute resolution and a 1-sigma thermal noise level of 375 micro-Jy per beam, although the effective noise is a factor 3 higher due to residual sidelobe confusion. From this we derive a catalogue of 3,722 discrete radio components, using the 35 percent fractional bandwidth to measure in-band spectral indices for 1,037 of them. A search for transient events reveals one significantly variable source within the survey area. The survey covers approximately two-thirds of the Spitzer South Pole Telescope Deep Field. This pilot project demonstrates the viability and potential of using PAFs to rapidly and accurately survey the sky at radio wavelengths.



قيم البحث

اقرأ أيضاً

The Murchison Wide-field Array (MWA) is a low frequency radio telescope, currently under construction, intended to search for the spectral signature of the epoch of re-ionisation (EOR) and to probe the structure of the solar corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles grouped into 512 tiles, and be capable of imaging the sky south of 40 degree declination, from 80 MHz to 300 MHz with an instantaneous field of view that is tens of degrees wide and a resolution of a few arcminutes. A 32-station prototype of the MWA has been recently commissioned and a set of observations taken that exercise the whole acquisition and processing pipeline. We present Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees wide centered on Pictoris A. These images demonstrate the capacity and stability of a real-time calibration and imaging technique employing the weighted addition of warped snapshots to counter extreme wide field imaging distortions.
We have measured the aperture-array noise temperature of the first Mk. II phased array feed that CSIRO has built for the Australian Square Kilometre Array Pathfinder telescope. As an aperture array, the Mk. II phased array feed achieves a beam equiva lent noise temperature less than 40 K from 0.78 GHz to 1.7 GHz and less than 50 K from 0.7 GHz to 1.8 GHz for a boresight beam directed at the zenith. We believe these are the lowest reported noise temperatures over these frequency ranges for ambient-temperature phased arrays. The measured noise temperature includes receiver electronics noise, ohmic losses in the array, and stray radiation from sidelobes illuminating the sky and ground away from the desired field of view. This phased array feed was designed for the Australian Square Kilometre Array Pathfinder to demonstrate fast astronomical surveys with a wide field of view for the Square Kilometre Array.
60 - L. Wang , J. Mould , D. Baade 2019
A major scientific goal of JWST is to probe the epoch of re-ionization of the Universe at z above 6, and up to 20 and beyond. At these redshifts, galaxies are just beginning to form and the observable objects are early black holes, supernovae, and co smic infrared background. The JWST has the necessary sensitivity to observe these targets individually, but a public deep and wide science enabling survey in the wavelength range from 2-5 $mu$m is needed to discover these black holes and supernovae and to cover the area large enough for cosmic infrared background to be reliably studied. This enabling survey will also discover a large number of other transients and enable sciences such as supernova cosmology up to z $sim$ 5, star formation history at high redshift through supernova explosions, faint stellar objects in the Milky Way, and galaxy evolution up to z approaching 10. The results of this survey will also serve as an invaluable target feeder for the upcoming era of ELT and SKA.
We report results from a neutral hydrogen (HI) intensity mapping survey conducted with a Phased Array Feed (PAF) on the Parkes telescope. The survey was designed to cover ~ 380 deg^2 over the redshift range 0.3 < z < 1 (a volume of ~ 1.5 Gpc^3) in fo ur fields covered by the WiggleZ Dark Energy Survey. The results presented here target a narrow redshift range of 0.73 < z < 0.78 where the effect of radio frequency interference (RFI) was less problematic. The data reduction and simulation pipeline is described, with an emphasis on flagging of RFI and correction for signal loss in the data reduction process, particularly due to the foreground subtraction methodology. A cross-correlation signal was detected between the HI intensity maps and the WiggleZ redshift data, with a mean amplitude of<{Delta}T_b{delta}_{opt}> = 1.32 pm 0.42 mK (statistical errors only). A future Parkes cryogenic PAF is expected to detect the cross-correlation signal with higher accuracy than previously possible and allow measurement of the cosmic HI density at redshifts up to unity.
This paper presents the measured sensitivity of CSIROs first Mk. II phased array feed (PAF) on an ASKAP antenna. The Mk. II achieves a minimum system-temperature-over-efficiency $T_mathrm{sys}/eta$ of 78 K at 1.23 GHz and is 95 K or better from 835 M Hz to 1.8 GHz. This PAF was designed for the Australian SKA Pathfinder telescope to demonstrate fast astronomical surveys with a wide field of view for the Square Kilometre Array (SKA).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا