ﻻ يوجد ملخص باللغة العربية
A number of mechanisms to understand the periodic class II methanol masers associated with some high-mass star forming regions have been proposed in the past. Two recent proposals, ie. by Parfenov &Sobolev (2014) and Sanna et al. (2015) have been presented in order to explain the periodic masers in sources with light curves similar to the methanol masers in G9.62+0.20E. We evaluate to what extent the proposals and models presented by these authors can explain the light curve of the methanol masers in G9.62+0.20E. It is argued that neither of the proposed mechanisms can reproduce the light curves of the methanol masers in G9.62+0.20E.
We present the light curves of the 6.7 and 12.2 GHz methanol masers in the star forming region G9.62+0.20E for a time span of more than 2600 days. The earlier reported period of 244 days is confirmed. The results of monitoring the 107 GHz methanol ma
We present the results of a monitoring campaign using the KAT-7 and HartRAO 26m telescopes, of hydroxyl, methanol and water vapour masers associated with the high-mass star forming region G9.62+0.20E. Periodic flaring of the main line hydroxyl masers
We have used the University of Tasmania Mt Pleasant 26m radio telescope to investigate the polarisation characteristics of a sample of strong 6.7 GHz methanol masers, the first spectral line polarisation observations to be undertaken with this instru
Emission from the 6.7 GHz methanol maser transition is very strong, is relatively stable, has small internal motions, and is observed toward numerous massive star-forming regions in the Galaxy. Our goal is to perform high-precision astrometry using t
Using the 870-$mu$m APEX Telescope Large Area Survey of the Galaxy (ATLASGAL), we have identified 577 submillimetre continuum sources with masers from the methanol multibeam (MMB) survey in the region $280degr < ell < 20degr$; $|,b,| < 1.5degr$. 94,p