ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hyperon Puzzle in Neutron Stars

169   0   0.0 ( 0 )
 نشر من قبل Ignazio Bombaci Prof.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ignazio Bombaci




اسأل ChatGPT حول البحث

The so called hyperon puzzle, i.e. the difficulty to reconcile the measured masses of neutron stars (NSs) with the presence of hyperons in their interiors, is one of the hot topics in astrophysics which is stimulating copious experimental and theoretical research in hypernuclear physics. After illustrating the origin of the hyperon puzzle, I discuss some of its possible solutions, and particularly those related to the role of hyperonic two- and three-body interactions on the equation of state of dense matter. Afterward, I discuss a possibility to circumvent the hyperon puzzle allowing for the presence of strangeness in NSs in the form of deconfined strange quark matter, and thus considering the so called quark stars, i.e. hybrid stars or strange stars. Finally I discuss the astrophysical consequences of the possible conversion process of an hadronic star to a quark star.



قيم البحث

اقرأ أيضاً

The onset of hyperons in the core of neutron stars and the consequent softening of the equation of state have been questioned for a long time. Controversial theoretical predictions and recent astrophysical observations of neutron stars are the ground s for the so-called hyperon puzzle. We calculate the equation of state and the neutron star mass-radius relation of an infinite systems of neutrons and $Lambda$ particles by using the auxiliary field diffusion Monte Carlo algorithm. We find that the three-body hyperon-nucleon interaction plays a fundamental role in the softening of the equation of state and for the consequent reduction of the predicted maximum mass. We have considered two different models of three-body force that successfully describe the binding energy of medium mass hypernuclei. Our results indicate that they give dramatically different results on the maximum mass of neutron stars, not necessarily incompatible with the recent observation of very massive neutron stars. We conclude that stronger constraints on the hyperon-neutron force are necessary in order to properly assess the role of hyperons in neutron stars.
The prediction of neutron stars properties is strictly connected to the employed nuclear interactions. The appearance of hyperons in the inner core of the star is strongly dependent on the details of the underlying hypernuclear force. We summarize ou r recent quantum Monte Carlo results on the development of realistic two- and three-body hyperon-nucleon interactions based on the available experimental data for light- and medium-heavy hypernuclei.
When hadron-quark continuity is formulated in terms of a topology change at a density higher than twice the nuclear matter densiy $n_0$ the core of massive compact stars can be described in terms of quasiparticles of fractional baryon charges, behavi ng neither like pure baryons nor deconfined quarks. Hidden symmetries, both local gauge and pseudo-conformal (or broken scale), emerge and give rise to the long-standing quenched $g_A$ in nuclear Gamow-Teller transitions at $sim n_0$ and to the pseudo-conformal sound velocity $v_{pcs}^2/c^2approx 1/3$ at $gsim 3n_0$. These properties are confronted with the recent observations in superallowed Gamow-Teller transitions and in astrophysical observations.
In the last years auxiliary field diffusion Monte Carlo has been used to assess the properties of hypernuclear systems, from light- to medium-heavy hypernuclei and hyper-neutron matter. One of the main findings is the key role played by the three-bod y hyperon-nucleon-nucleon interaction in the determination of the hyperon separation energy of hypernuclei and as a possible solution to the hyperon puzzle. However, there are still aspects of the employed hypernuclear potential that remain to be carefully investigated. In this paper we show that the isospin dependence of the Lambda-NN force, which is crucial in determining the NS structure, is poorly constrained by the available experimental data.
Observations show that, at the beginning of their existence, neutron stars are accelerated briskly to velocities of up to $1000$ km/s. We discuss possible mechanisms contributing to these kicks in a systematic effective-field-theory framework. Anomal ies of the underlying microscopic theory result in chiral transport terms in the hydrodynamic description, and we identify these as explanation for the drastic acceleration. In the presence of vorticity or a magnetic field, the chiral transport effects cause neutrino emission along the respective axes. In typical scenarios, the transport effect due to the magnetic field turns out to be strong enough to explain the kicks. Mixed gauge-gravitational anomalies enter in a distinct way, and we also discuss their implications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا