ﻻ يوجد ملخص باللغة العربية
Current discussions of the allowed two-Higgs-doublet model (2HDM) parameter space after LHC Run 1 and the prospects for Run 2 are commonly phrased in the context of a quasi-degenerate spectrum for the new scalars. Here we discuss the generic situation of a 2HDM with a non-degenerate spectrum for the new scalars. This is highly motivated from a cosmological perspective since it naturally leads to a strongly first order electroweak phase transition that could explain the matter-antimatter asymmetry in the Universe. While constraints from measurements of Higgs signal strengths do not change, those from searches of new scalar states get modified dramatically once a non-degenerate spectrum is considered.
We present a comprehensive study of the electroweak interactions using the available Higgs and electroweak diboson production results from LHC Runs 1 and 2 as well as the electroweak precision data, in terms of the dimension-six operators. Under the
Based on Run I data we present a comprehensive analysis of Higgs couplings. For the first time this SFitter analysis includes independent tests of the Higgs-gluon and top Yukawa couplings, Higgs decays to invisible particles, and off-shell Higgs meas
Supersymmetric models with sub-TeV charginos and sleptons have been a candidate for the origin of the long-standing discrepancy in the muon anomalous magnetic moment (g-2). By gathering all the available LHC Run 2 results, we investigate the latest L
The Madala hypothesis postulates a new heavy scalar, H, which explains several independent anomalous features seen in ATLAS and CMS data simultaneously. It has already been discussed and constrained in the literature by Run 1 results, and its underly
In the recent paper on The Higgs Legacy of the LHC Run I we interpreted the LHC Higgs results in terms of an effective Lagrangian using the SFitter framework. For the on-shell Higgs analysis of rates and kinematic distributions we relied on a linear