ﻻ يوجد ملخص باللغة العربية
The usual assumption in direct dark matter searches is to only consider the spin-dependent or spin-independent scattering of dark matter particles. However, especially in models with light dark matter particles $mathcal{O}(mathrm{GeV/c^2})$, operators which carry additional powers of the momentum transfer $q^2$ can become dominant. One such model based on asymmetric dark matter has been invoked to overcome discrepancies in helioseismology and an indication was found for a particle with preferred mass of 3 $mathrm{GeV/c^2}$ and cross section of $10^{-37} mathrm{cm^2}$. Recent data from the CRESST-II experiment, which uses cryogenic detectors based on $mathrm{CaWO_4}$ to search for nuclear recoils induced by dark matter particles, are used to constrain these momentum-dependent models. The low energy threshold of 307 eV for nuclear recoils of the detector used, allows us to rule out the proposed best fit value above.
Direct Dark Matter detection with cryodetectors is briefly discussed, with particular mention of the possibility of the identification of the recoil nucleus. Preliminary results from the CREEST II Dark Matter search, with 730 kg-days of data, are pre
The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO$_4$ crystals. Given the low energy threshold of our detectors in combination with light target nu
CRESST is a direct dark matter search experiment, aiming for an observation of nuclear recoils induced by the interaction of dark matter particles with cryogenic scintillating calcium tungstate crystals. Instead of confining ourselves to standard spi
We present updated constraints on dark matter models with momentum-dependent or velocity-dependent interactions with nuclei, based on direct detection and solar physics. We improve our previous treatment of energy transport in the solar interior by d
The CRESST experiment, located at Laboratori Nazionali del Gran Sasso in Italy, searches for dark matter particles via their elastic scattering off nuclei in a target material. The CRESST target consists of scintillating CaWO$_4$ crystals, which are