ﻻ يوجد ملخص باللغة العربية
It is well known that the Prym variety of an etale cyclic covering of a hyperelliptic curve is isogenous to the product of two Jacobians. Moreover, if the degree of the covering is odd or congruent to 2 mod 4, then the canonical isogeny is an isomorphism. We compute the degree of this isogeny in the remaining cases and show that only in the case of coverings of degree 4 it is an isomorphism.
The Prym map assigns to each covering of curves a polarized abelian variety. In the case of unramified cyclic covers of curves of genus two, we show that the Prym map is ramified precisely on the locus of bielliptic covers. The key observation is tha
Algebraic curves in Hilbert modular surfaces that are totally geodesic for the Kobayashi metric have very interesting geometric and arithmetic properties, e.g. they are rigid. There are very few methods known to construct such algebraic geodesics tha
We prove an analogue of Kirchhoffs matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical Prym variety, via a c
We study the Prym varieties arising from etale cyclic coverings of degree 7 over a curve of genus 2. These Prym varieties are products of Jacobians JY x JY of genus 3 curves Y with polarization type D=(1,1,1,1,1,7). We describe the fibers of the Prym
A fine moduli space is constructed, for cyclic-by-$mathsf{p}$ covers of an affine curve over an algebraically closed field $k$ of characteristic $mathsf{p}>0$. An intersection of finitely many fine moduli spaces for cyclic-by-$mathsf{p}$ covers of af