ﻻ يوجد ملخص باللغة العربية
Two-dimensional (2D) semiconductors have shown great promise in (opto)electronic applications. However, their developments are limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals due to the strong Fermi level pinning (FLP) effect. Here we show that, this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interaction. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (e.g. H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions, but also uncovers great potential of 2D metals in device applications.
Two-dimensional semiconductors are excellent candidates for next-generation electronics and optoelec-tronics thanks to their electrical properties and strong light-matter interaction. To fabricate devices with optimal electrical properties, it is cru
We report on Andreev reflections at clean NbSe2-bilayer graphene junctions. The high transparency of the junction, which manifests as a large conductance enhancement of up to 1.8, enables us to see clear evidence of a proximity-induced superconductin
It is demonstrated that the electric dipole layer due to the overlapping of electron wavefunctions at metal/graphene contact results in negative Fermi-level pinning effect on the region of GaAs surface with low interface-trap density in metal/graphen
Van der Waals materials and heterostructures manifesting strongly bound room temperature exciton states exhibit emergent physical phenomena and are of a great promise for optoelectronic applications. Here, we demonstrate that nanostructured multilaye
The van der Waals heterostructures are a fertile frontier for discovering emergent phenomena in condensed matter systems. They are constructed by stacking elements of a large library of two-dimensional materials, which couple together through van der