ﻻ يوجد ملخص باللغة العربية
We describe a setup for obtaining uncertainty relations for arbitrary pairs of observables related by Fourier transform. The physical examples discussed here are standard position and momentum, number and angle, finite qudit systems, and strings of qubits for quantum information applications. The uncertainty relations allow an arbitrary choice of metric for the distance of outcomes, and the choice of an exponent distinguishing e.g., absolute or root mean square deviations. The emphasis of the article is on developing a unified treatment, in which one observable takes values in an arbitrary locally compact abelian group and the other in the dual group. In all cases the phase space symmetry implies the equality of measurement uncertainty bounds and preparation uncertainty bounds, and there is a straightforward method for determining the optimal bounds.
Uncertainty relations (URs) like the Heisenberg-Robertson or the time-energy UR are often considered to be hallmarks of quantum theory. Here, a simple derivation of these URs is presented based on a single classical inequality from estimation theory,
In this work we study various notions of uncertainty for angular momentum in the spin-s representation of SU(2). We characterize the uncertainty regions given by all vectors, whose components are specified by the variances of the three angular moment
Measurement uncertainty relations are quantitative bounds on the errors in an approximate joint measurement of two observables. They can be seen as a generalization of the error/disturbance tradeoff first discussed heuristically by Heisenberg. Here w
New uncertainty relations for n observables are established. The relations take the invariant form of inequalities between the characteristic coefficients of order r, r = 1,2,...,n, of the uncertainty matrix and the matrix of mean commutators of the
In this paper we provide a new set of uncertainty principles for unitary operators using a sequence of inequalities with the help of the geometric-arithmetic mean inequality. As these inequalities are fine-grained compared with the well-known Cauchy-