ﻻ يوجد ملخص باللغة العربية
Bit retrieval is the problem of reconstructing a binary sequence from its periodic autocorrelation, with applications in cryptography and x-ray crystallography. After defining the problem, with and without noise, we describe and compare various algorithms for solving it. A geometrical constraint satisfaction algorithm, relaxed-reflect-reflect, is currently the best algorithm for noisy bit retrieval.
We consider the problem of scattering $n$ robots in a two dimensional continuous space. As this problem is impossible to solve in a deterministic manner, all solutions must be probabilistic. We investigate the amount of randomness (that is, the numbe
We revisit the complexity of online computation in the cell probe model. We consider a class of problems where we are first given a fixed pattern or vector $F$ of $n$ symbols and then one symbol arrives at a time in a stream. After each symbol has ar
We initiate the study of computing (near-)optimal contracts in succinctly representable principal-agent settings. Here optimality means maximizing the principals expected payoff over all incentive-compatible contracts---known in economics as second-b
We consider the {em vector partition problem}, where $n$ agents, each with a $d$-dimensional attribute vector, are to be partitioned into $p$ parts so as to minimize cost which is a given function on the sums of attribute vectors in each part. The pr
We investigate the parameterized complexity in $a$ and $b$ of determining whether a graph~$G$ has a subset of $a$ vertices and $b$ edges whose removal disconnects $G$, or disconnects two prescribed vertices $s, t in V(G)$.