ﻻ يوجد ملخص باللغة العربية
PSR B0919+06 generally radiates radio pulses in a normal phase range. It has been known for its occasional perplexing abnormal emission events wherein individual pulses come to an earlier phase range for a few tens of periods and then returns to its usual phase. Heretofore, only a few such events have been available for study. We observed PSR B0919+06 for about 30 hours using the Jiamusi 66-m telescope at Jiamusi Deep Space Station at S-band, and detected 92 abnormal emission events. We identify four types of events based on the abrupted or gradual phase-shifting of individual pulses. The abnormal emission events are seen to occur randomly some every 1000 to 3000 periods, and they affect the leading edge of the mean profile by up to 2% in amplitude. The abnormal emission events are probably related to gradual changes of emission processing in the pulsar magnetosphere.
A quasi-periodicity has been identified in the strange emission shifts in pulsar B1859+07 and possibly B0919+06. These events, first investigated by Rankin, Rodriguez & Wright in 2006, originally appeared disordered or random, but further mapping as
Most of pulsar nulling observations were conducted at frequencies lower than 1400~MHz. We aim to understand the nulling behaviors of pulsars at relatively high frequency, and to check if nulling is caused by a global change of pulsar magnetosphere. 2
We present 35 ks Chandra ACIS observations of the 42 Myr old radio pulsar PSR B1451-68. A point source is detected 0.32 +/- 0.73 from the expected radio pulsar position. It has ~200 counts in the 0.3-8 keV energy range. We identify this point source
We report hard X-ray and gamma-ray observations of the impulsive phase of the SOL2017-09-06T11:55 X9.3 solar flare. We focus on a high-energy part of the spectrum, >100 keV, and perform time resolved spectral analysis for a portion of the impulsive p
We report on Bayesian parameter estimation of the mass and equatorial radius of the millisecond pulsar PSR J0030$+$0451, conditional on pulse-profile modeling of Neutron Star Interior Composition Explorer (NICER) X-ray spectral-timing event data. We