ﻻ يوجد ملخص باللغة العربية
Using an array of high-purity Compton-suppressed germanium detectors, we performed an independent measurement of the $beta$-decay branching ratio from $^{12}mathrm{B}$ to the second-excited (Hoyle) state in $^{12}mathrm{C}$. Our result is $0.64(11)%$, which is a factor $sim 2$ smaller than the previously established literature value, but is in agreement with another recent measurement. This could indicate that the Hoyle state is more clustered than previously believed. The angular correlation of the Hoyle state $gamma$ cascade has also been measured for the first time. It is consistent with theoretical predictions.
The cascading 3.21 MeV and 4.44 MeV electric quadrupole transitions have been observed from the Hoyle state at 7.65 MeV excitation energy in $^{12}$C, excited by the $^{12}$C(p,p$^{prime}$) reaction at 10.7 MeV proton energy. From the proton-$gamma$-
Background: The structure of the Hoyle state, a highly $alpha$-clustered state at 7.65 MeV in $^{12}mathrm{C}$, has long been the subject of debate. Understanding if the system comprises of three weakly-interacting $alpha$-particles in the 0s orbital
In $beta$-decay studies the determination of the decay probability to the ground state of the daughter nucleus often suffers from large systematic errors. The difficulty of the measurement is related to the absence of associated delayed $gamma$-ray e
The fragmentation of quasi-projectiles from the nuclear reaction $^{40}$Ca+$^{12}$C at 25 MeV/nucleon was used to produce excited states candidates to $alpha$-particle condensation. Complete kinematic characterization of individual decay events, made
In the context of the search for triples of relativistic $alpha$-particles in the Hoyle state, the analysis of available data on the dissociation of the nuclei ${}^{12}$C, ${}^{16}$O and ${}^{22}$Ne in the nuclear emulsion was carried out. The Hoyle