ترغب بنشر مسار تعليمي؟ اضغط هنا

HerMES: A search for high-redshift dusty galaxies in the HerMES Large Mode Survey - Catalogue, number counts and early results

68   0   0.0 ( 0 )
 نشر من قبل Viktoria Asboth
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Selecting sources with rising flux densities towards longer wavelengths from Herschel/SPIRE maps is an efficient way to produce a catalogue rich in high-redshift (z > 4) dusty star-forming galaxies. The effectiveness of this approach has already been confirmed by spectroscopic follow-up observations, but the previously available catalogues made this way are limited by small survey areas. Here we apply a map-based search method to 274 deg$^2$ of the HerMES Large Mode Survey (HeLMS) and create a catalogue of 477 objects with SPIRE flux densities $S_{500} > S_{350} >S_{250}$ and a $5 sigma$ cut-off $S_{500} > $ 52 mJy. From this catalogue we determine that the total number of these red sources is at least an order of magnitude higher than predicted by galaxy evolution models. These results are in agreement with previous findings in smaller HerMES fields; however, due to our significantly larger sample size we are also able to investigate the shape of the red source counts for the first time. We have obtained spectroscopic redshift measurements for two of our sources using the Atacama Large Millimeter/submillimeter Array (ALMA). The redshifts z = 5.1 and z = 3.8 confirm that with our selection method we can indeed find high-redshift dusty star-forming galaxies.



قيم البحث

اقرأ أيضاً

We present a method for selecting $z>4$ dusty, star forming galaxies (DSFGs) using Herschel/SPIRE 250/350/500 $mu m$ flux densities to search for red sources. We apply this method to 21 deg$^2$ of data from the HerMES survey to produce a catalog of 3 8 high-$z$ candidates. Follow-up of the first 5 of these sources confirms that this method is efficient at selecting high-$z$ DSFGs, with 4/5 at $z=4.3$ to $6.3$ (and the remaining source at $z=3.4$), and that they are some of the most luminous dusty sources known. Comparison with previous DSFG samples, mostly selected at longer wavelengths (e.g., 850 $mu m$) and in single-band surveys, shows that our method is much more efficient at selecting high-$z$ DSFGs, in the sense that a much larger fraction are at $z>3$. Correcting for the selection completeness and purity, we find that the number of bright ($S_{500,mu m} ge 30$ mJy), red Herschel sources is $3.3 pm 0.8$ deg$^{-2}$. This is much higher than the number predicted by current models, suggesting that the DSFG population extends to higher redshifts than previously believed. If the shape of the luminosity function for high-$z$ DSFGs is similar to that at $zsim2$, rest-frame UV based studies may be missing a significant component of the star formation density at $z=4$ to $6$, even after correction for extinction.
The Herschel Multi-tiered Extragalactic Survey (HerMES) has identified large numbers of dusty star-forming galaxies (DSFGs) over a wide range in redshift. A detailed understanding of these DSFGs is hampered by the limited spatial resolution of Hersch el. We present 870um 0.45 resolution imaging from the Atacama Large Millimeter/submillimeter Array (ALMA) of 29 HerMES DSFGs with far-infrared (FIR) flux densities in between the brightest of sources found by Herschel and fainter DSFGs found in ground-based sub-millimeter (sub-mm) surveys. We identify 62 sources down to the 5-sigma point-source sensitivity limit in our ALMA sample (sigma~0.2mJy), of which 6 are strongly lensed (showing multiple images) and 36 experience significant amplification (mu>1.1). To characterize the properties of the ALMA sources, we introduce and make use of uvmcmcfit, a publicly available Markov chain Monte Carlo analysis tool for interferometric observations of lensed galaxies. Our lens models tentatively favor intrinsic number counts for DSFGs with a steep fall off above 8mJy at 880um. Nearly 70% of the Herschel sources comprise multiple ALMA counterparts, consistent with previous research indicating that the multiplicity rate is high in bright sub-mm sources. Our ALMA sources are located significantly closer to each other than expected based on results from theoretical models as well as fainter DSFGs identified in the LABOCA ECDFS Submillimeter Survey. The high multiplicity rate and low projected separations argue in favor of interactions and mergers driving the prodigious emission from the brightest DSFGs as well as the sharp downturn above S_880=8mJy.
Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so called dropout technique or Ly-alpha selection. However, the availability of multifilter data allows now replacing the dropout selections by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims. Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing in the study of the brightest, less frequent, high redshift galaxies. Methods. The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results. Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z=2.5, 3.0, 3.5, 4.0, and 4.5, being complete up to the limiting magnitude at m_UV(AB)=24. With the wide field ALHAMBRA data we especially contribute in the study of the brightest ends of these counts, sampling well the surface densities down to m_UV(AB)=21-22. Conclusions. We show that using the zPDFs it is easy to select a clean sample of high redshift galaxies. We also show that statistical analysis of the properties of galaxies is better done using a probabilistic approach, which takes into account both the incompleteness and contamination in a natural way.
Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to pr ovide a benchmark for models of galaxy population evolution and to test pre-existing models of galaxies. With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to ~20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts at <100 mJy. We have directly resolved 15% of the infrared extra-galactic background at the wavelength near where it peaks.
We measure the angular correlation function, w(theta), from 0.5 to 30 arcminutes of detected sources in two wide fields of the Herschel Multi-tiered Extragalactic Survey (HerMES). Our measurements are consistent with the expected clustering shape fro m a population of sources that trace the dark matter density field, including non-linear clustering at arcminute angular scales arising from multiple sources that occupy the same dark matter halos. By making use of the halo model to connect the spatial clustering of sources to the dark matter halo distribution, we estimate source bias and halo occupation number for dusty sub-mm galaxies at z ~ 2. We find that sub-mm galaxies with 250 micron flux densities above 30 mJy reside in dark matter halos with mass above (5pm4) x 10^12 M_sun, while (14pm8)% of such sources appear as satellites in more massive halos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا