ﻻ يوجد ملخص باللغة العربية
We present the last developments on the IVOA Provenance data model, mainly based on the W3C PROV concept. In the context of the Cherenkov astronomy, the data processing stages imply both assumptions and comparison to dedicated simulations. As a consequence, Provenance information is crucial to the end user in order to interpret the high level data products. The Cherenkov Telescope Array (CTA), currently in preparation, is thus a perfect test case for the development of an IVOA standard on Provenance information. We describe general use-cases for the computational Provenance in the CTA production pipeline and explore the proposed W3C notations like PROV-N formats, as well as Provenance access solutions.
Recently the International Virtual Observatory Alliance (IVOA) released a standard to structure provenance metadata, and several implementations are in development in order to capture, store, access and visualize the provenance of astronomy data prod
For data-centric systems, provenance tracking is particularly important when the system is open and decentralised, such as the Web of Linked Data. In this paper, a concise but expressive calculus which models data updates is presented. The calculus i
The Photometry Data Model (PhotDM) standard describes photometry filters, photometric systems, magnitude systems, zero points and its interrelation with the other IVOA data models through a simple data model. Particular attention is given necessarily
Database systems analyze queries to determine upfront which data is needed for answering them and use indexes and other physical design techniques to speed-up access to that data. However, for important classes of queries, e.g., HAVING and top-k quer
Provenance is information about the origin, derivation, ownership, or history of an object. It has recently been studied extensively in scientific databases and other settings due to its importance in helping scientists judge data validity, quality a