ترغب بنشر مسار تعليمي؟ اضغط هنا

Big Numbers in String Theory

50   0   0.0 ( 0 )
 نشر من قبل Bert Schellekens
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف A.N. Schellekens




اسأل ChatGPT حول البحث

This paper contains some personal reflections on several computational contributions to what is now known as the String Theory Landscape. It consists of two parts. The first part concerns the origin of big numbers, and especially the number $10^{1500}$ that appeared in work on the covariant lattice construction (with W. Lerche and D. Luest). This part contains some new results. I correct a huge but inconsequential error, discuss some more accurate estimates, and compare with the counting for free fermion constructions. In particular I prove that the latter only provide an exponentially small fraction of all even self-dual lattices for large lattice dimensions. The second part of the paper concerns dealing with big numbers, and contains some lessons learned from various vacuum scanning projects.



قيم البحث

اقرأ أيضاً

In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikel y. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe bounce into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a hot big bounce in which the bouncing and heating mechanisms originate from the quantum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its simplest version (where it represents an alternative and not a complement to standard slow-roll inflation) it can produce a viable spectrum of density perturbations, together with a tensor component characterized by a blue spectral index with a peak in the GHz frequency range. That means, phenomenologically, a very small contribution to a primordial B-mode in the CMB polarization, and the possibility of a large enough stochastic background of gravitational waves to be measurable by present or future gravitational wave detectors.
We perform an extensive analysis of the statistics of axion masses and interactions in compactifications of type IIB string theory, and we show that black hole superradiance excludes some regions of Calabi-Yau moduli space. Regardless of the cosmolog ical model, a theory with an axion whose mass falls in a superradiant band can be probed by the measured properties of astrophysical black holes, unless the axion self-interaction is large enough to disrupt formation of a condensate. We study a large ensemble of compactifications on Calabi-Yau hypersurfaces, with $1 leq h^{1,1} leq 491$ closed string axions, and determine whether the superradiance conditions on the masses and self-interactions are fulfilled. The axion mass spectrum is largely determined by the Kahler parameters, for mild assumptions about the contributing instantons, and takes a nearly-universal form when $h^{1,1} gg 1$. When the Kahler moduli are taken at the tip of the stretched Kahler cone, the fraction of geometries excluded initially grows with $h^{1,1}$, to a maximum of $approx 0.5$ at $h^{1,1} approx 160$, and then falls for larger $h^{1,1}$. Further inside the Kahler cone, the superradiance constraints are far weaker, but for $h^{1,1} gg 100$ the decay constants are so small that these geometries may be in tension with astrophysical bounds, depending on the realization of the Standard Model.
In this paper, we analyze the inflationary cosmology using string field theory. This is done by using the zero level contribution from string field theory, which is a non-local tachyonic action. We will use the non-local Friedmann equations for this model based on string field theory, and calculate the slow-roll parameters for this model. We will then explicitly obtain the scalar and tensorial power spectrum, their related indices, and the tensor-to-scalar ratio for this model. Finally, we use cosmological data from Planck 2013 to 2018 to constrain the free parameters in this model and find that string field theory is compatible with them.
We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional U(1)^3-supergravity which is regular on and outside an event horizon of lens space topology L(2,1). The solution has seven independent parameters and uplift s to a family of 1/8-supersymmetric D1-D5-P black brane solutions to Type IIB supergravity. The decoupling limit is asymptotically AdS(3) x S^3 x T^4, with a near-horizon geometry that is a twisted product of the near-horizon geometry of the extremal BTZ black hole and L(2,1) x T^4, although it is not (locally) a product space in the bulk. We show that the decoupling limit of a special case of the black lens is related to that of a black ring by spectral flow, thereby supplying an account of its entropy. Analogous solutions of U(1)^N-supergravity are also presented.
Melnikovs method is an analytical way to show the existence of classical chaos generated by a Smale horseshoe. It is a powerful technique, though its applicability is somewhat limited. In this paper, we present a solution of type IIB supergravity to which Melnikovs method is applicable. This is a brane-wave type deformation of the AdS$_5times$S$^5$ background. By employing two reduction ansatze, we study two types of coupled pendulum-oscillator systems. Then the Melnikov function is computed for each of the systems by following the standard way of Holmes and Marsden and the existence of chaos is shown analytically.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا