ﻻ يوجد ملخص باللغة العربية
Magnons are the energy quanta of fundamental spin excitations, namely spin waves, and they can make a considerable contribution to energy transport in some magnetic materials in a similar manner as lattice vibration waves or phonons. The coupling and possible non-equilibrium between magnons and other energy carriers have been used to explain several recently discovered thermally driven spin transport and energy conversion phenomena. Here, we report experiments in which local non-equilibrium between magnons and phonons in a single crystalline bulk magnetic insulator, Y3Fe5O12 (yttrium iron garnet, or YIG), has been created optically within a focused laser spot and probed directly with the use of micro-Brillouin light scattering (BLS). By analyzing the experimental results with a thermally induced magnon diffusion model, we obtain the magnon diffusion length of thermal magnons. By explicitly establishing non-equilibrium between magnons and phonons, our studies represent an important step toward a quantitative understanding of various spin-heat coupling phenomena.
Emergent cooperative motions of individual degrees of freedom, i.e. collective excitations, govern the low-energy response of system ground states under external stimulations and play essential roles for understanding many-body phenomena in low-dimen
The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO$_3$ were measured for temperatures $200 leq T leq 750,$K, using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO$
We demonstrate the use of the micro-Brillouin light scattering (micro-BLS) technique as a local temperature sensor for magnons in a Permalloy thin film and phonons in the glass substrate. A systematic shift in the frequencies of two thermally excited
Spin and lattice dynamics of CaMn7O12 ceramics were investigated using infrared, THz and inelastic neutron scattering (INS) spectroscopies in the temperature range 2 to 590 K, and, at low temperatures, in applied magnetic fields of up to 12 T. On coo
We report results of an investigation of the temperature dependence of the magnon and phonon frequencies in NiO. A combination of Brillouin - Mandelstam and Raman spectroscopies allowed us to elucidate the evolution of the phonon and magnon spectral