ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric mass models of disk galaxies - I. Messier 99

96   0   0.0 ( 0 )
 نشر من قبل Laurent Chemin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Mass models of galactic disks traditionally rely on axisymmetric density and rotation curves, paradoxically acting as if their most remarkable asymmetric features, such as lopsidedness or spiral arms, were not important. In this article, we relax the axisymmetry approximation and introduce a methodology that derives 3D gravitational potentials of disk-like objects and robustly estimates the impacts of asymmetries on circular velocities in the disk midplane. Mass distribution models can then be directly fitted to asymmetric line-of-sight velocity fields. Applied to the grand-design spiral M99, the new strategy shows that circular velocities are highly nonuniform, particularly in the inner disk of the galaxy, as a natural response to the perturbed gravitational potential of luminous matter. A cuspy inner density profile of dark matter is found in M99, in the usual case where luminous and dark matter share the same center. The impact of the velocity nonuniformity is to make the inner profile less steep, although the density remains cuspy. On another hand, a model where the halo is core dominated and shifted by 2.2-2.5 kpc from the luminous mass center is more appropriate to explain most of the kinematical lopsidedness evidenced in the velocity field of M99. However, the gravitational potential of luminous baryons is not asymmetric enough to explain the kinematical lopsidedness of the innermost regions, irrespective of the density shape of dark matter. This discrepancy points out the necessity of an additional dynamical process in these regions: possibly a lopsided distribution of dark matter.



قيم البحث

اقرأ أيضاً

Galactic winds are a common phenomenon in starburst galaxies in the local universe as well as at higher redshifts. Their sources are superbubbles driven by sequential supernova explosions in star forming regions, which carve out large holes in the in terstellar medium and eject hot, metal enriched gas into the halo and to the galactic neighborhood. We investigate the evolution of superbubbles in exponentially stratified disks. We present advanced analytical models for the expansion of such bubbles and calculate their evolution in space and time. With these models one can derive the energy input that is needed for blow-out of superbubbles into the halo and derive the break-up of the shell, since Rayleigh-Taylor instabilities develop soon after a bubble starts to accelerate into the halo. The approximation of Kompaneets is modified in order to calculate velocity and acceleration of a bubble analytically. Our new model differs from earlier ones, because it presents for the first time an analytical calculation for the expansion of superbubbles in an exponential density distribution driven by a time-dependent energy input rate. The time-sequence of supernova explosions of OB-stars is modeled using their main sequence lifetime and an initial mass function. We calculate the morphology and kinematics of superbubbles powered by three different kinds of energy input and we derive the energy input required for blow-out as a function of the density and the scale height of the ambient interstellar medium. The Rayleigh-Taylor instability timescale in the shell is calculated in order to estimate when the shell starts to fragment and finally breaks up. Analytical models are a very efficient tool for comparison to observations, like e.g. the Local Bubble and the W4 bubble discussed in this paper, and also give insight into the dynamics of superbubble evolution.
A new deep HI survey of the galaxy Messier 33 is presented, based on observations obtained at the Dominion Radio Astrophysical Observatory. We observe a perturbed outer gas distribution and kinematics in M33, and confirm the disk warping as a signifi cant kinematical twist of the major axis of the velocity field, though no strong tilt is measured, in agreement with previous work. Evidence for a new low brightness HI component with anomalous velocity is reported. It harbours a large velocity scatter, as its kinematics both exceeds and lags the rotation of the disk, and leaks in the forbidden velocity zone of apparent counter-rotation. The observations also reveal wide and multiple peak HI profiles which can be partly explained by crowded orbits in the framework of the warp model. Asymmetric motions are identified in the velocity field, as possible signatures of a lopsided potential and the warp. The mass distribution modeling of the hybrid Halpha-HI rotation curve favours a cuspy dark matter halo with a concentration in disagreement with the LambdaCDM dark halo mass-concentration relationship. The total mass enclosed in 23 kpc is 8 10^10 Msol, of which 11% are stars and gas. At the virial radius of the cuspy halo, the resulting total mass is 5 10^11 Msol, but with a baryonic mass fraction of 2% only. This strongly suggests a more realistic radius encompassing the total mass of M33 well smaller than the virial radius of the halo, maybe comparable to the size of the HI disk.
We study the individual evolution histories of three nearby low-mass edge-on galaxies (IC 5052, NGC4244, and NGC5023). Using resolved stellar populations, we constructed star count density maps for populations of different ages and analyzed the chang e of structural parameters with stellar age within each galaxy. We do not detect a separate thick disk in any of the three galaxies, even though our observations cover a wider range in equivalent surface brightness than any integrated light study. While scale heights increase with age, each population can be well described by a single disk. Two of the galaxies contain a very weak additional component, which we identify as the faint halo. The mass of these faint halos is lower than 1% of the mass of the disk. The three galaxies show low vertical heating rates, which are much lower than the heating rate of the Milky Way. This indicates that heating agents, such as giant molecular clouds and spiral structure, are weak in low-mass galaxies. All populations in the three galaxies exhibit no or only little flaring. While this finding is consistent with previous integrated light studies, it poses strong constraints on galaxy simulations, where strong flaring is often found as a result of interactions or radial migration.
As part of a long-term project to revisit the kinematics and dynamics of the large disc galaxies of the Local Group, we present the first deep, wide-field (42 x 56) 3D-spectroscopic survey of the ionized gas disc of Messier 33. Fabry-Perot interferom etry has been used to map its Ha distribution and kinematics at unprecedented angular resolution (<3) and resolving power (12600), with the 1.6m telescope at the Observatoire du Mont Megantic. The ionized gas distribution follows a complex, large-scale spiral structure, unsurprisingly coincident with the already-known spiral structures of the neutral and molecular gas discs. The kinematical analysis of the velocity field shows that the rotation center of the Ha disc is distant from the photometric center by 170 pc (sky projected distance) and that the kinematical major-axis position angle and disc inclination are in excellent agreement with photometric values. The Ha rotation curve agrees very well with the HI rotation curves for 0 < R < 6.5 kpc, but the Ha velocities are 10-20 km/s higher for R > 6.5 kpc. The reason for this discrepancy is not well understood. The velocity dispersion profile is relatively flat around 16 km/s, which is at the low end of velocity dispersions of nearby star-forming galactic discs. A strong relation is also found between the Ha velocity dispersion and the Ha intensity. Mass models were obtained using the Ha rotation curve but, as expected, the dark matter halos parameters are not very well constrained since the optical rotation curve only extends out to 8 kpc.
We introduce SPARC (Spitzer Photometry & Accurate Rotation Curves): a sample of 175 nearby galaxies with new surface photometry at 3.6 um and high-quality rotation curves from previous HI/Halpha studies. SPARC spans a broad range of morphologies (S0 to Irr), luminosities (~5 dex), and surface brightnesses (~4 dex). We derive [3.6] surface photometry and study structural relations of stellar and gas disks. We find that both the stellar mass-HI mass relation and the stellar radius-HI radius relation have significant intrinsic scatter, while the HI mass-radius relation is extremely tight. We build detailed mass models and quantify the ratio of baryonic-to-observed velocity (Vbar/Vobs) for different characteristic radii and values of the stellar mass-to-light ratio (M/L) at [3.6]. Assuming M/L=0.5 Msun/Lsun (as suggested by stellar population models) we find that (i) the gas fraction linearly correlates with total luminosity, (ii) the transition from star-dominated to gas-dominated galaxies roughly corresponds to the transition from spiral galaxies to dwarf irregulars in line with density wave theory; and (iii) Vbar/Vobs varies with luminosity and surface brightness: high-mass, high-surface-brightness galaxies are nearly maximal, while low-mass, low-surface-brightness galaxies are submaximal. These basic properties are lost for low values of M/L=0.2 Msun/Lsun as suggested by the DiskMass survey. The mean maximum-disk limit in bright galaxies is M/L=0.7 Msun/Lsun at [3.6]. The SPARC data are publicly available and represent an ideal test-bed for models of galaxy formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا