ﻻ يوجد ملخص باللغة العربية
We theoretically investigate a nanoscale mode-division multiplexing scheme based on parity-time (PT) symmetric coaxial plasmonic waveguides. Coaxial waveguides support paired degenerate modes corresponding to distinct orbital angular momentum states. PT symmetric inclusions of gain and loss break the degeneracy of the paired modes and create new hybrid modes without orbital angular momentum. This process can be made thresholdless by matching the mode order with the number of gain and loss sections within the coaxial ring. Using both a Hamiltonian formulation and degenerate perturbation theory, we show how the wavevectors and fields evolve with increased loss/gain and derive sufficient conditions for thresholdless transitions. As a multiplexing filter, this PT symmetric coaxial waveguide could help double density rates in on-chip nanophotonic networks.
We demonstrate theoretically the electric tunability due to coalescence of exceptional points in PT-symmetric waveguides bounded by imperfect conductive layers. Owing to the competition effect of multimode interaction, multiple exceptional points and
Non-Hermitian Hamiltonians play an important role in many branches of physics, from quantum mechanics to acoustics. In particular, the realization of PT, and more recently -- anti-PT symmetries in optical systems has proved to be of great value from
The nonlinear dynamics of a balanced parity-time symmetric optical microring arrangement are analytically investigated. By considering gain and loss saturation effects, the pertinent conservation laws are explicitly obtained in the Stokes domain-thus
We propose deep-subwavelength optical waveguides based on metal-dielectric multilayer indefinite metamaterials with ultrahigh effective refractive indices. Waveguide modes with different mode orders are systematically analyzed with numerical simulati
The recently-developed notion of parity-time (PT) symmetry in optical systems with a controlled gain-loss interplay has spawned an intriguing way of achieving optical behaviors that are presently unattainable with standard arrangements. In most exper