ﻻ يوجد ملخص باللغة العربية
A magnetic skyrmion observed experimentally in chiral magnets is a topologically protected spin texture. For their unique properties, such as high mobility under current drive, skyrmions have huge potential for applications in next-generation spintronic devices. Defects naturally occurring in magnets have profound effects on the static and dynamical properties of skyrmions. In this work, we study the effect of an atomic defect on a skyrmion using the first-principles calculations within the density functional theory, taking MnSi as an example. By substituting one site of Mn or Si with different elements, we can tune the pinning energy. The effects of pinning by an atomic defect can be understood qualitatively within a phenomenological model.
We propose a method to decompose the total energy of a supercell containing defects into contributions of individual atoms, using the energy density formalism within density functional theory. The spatial energy density is unique up to a gauge transf
CeCuAl3 and CeAuAl3, crystallizing in the non-centrosymmetric BaNiSn3 tetragonal structure, are known mainly for their unusual neutron scattering spectra involving additional excitations ascribed to vibron quasi-bound quantum state in CeCuAl3 and ant
We study the atomic oxygen adsorption on Pb(111) surface by using density-functional theory within the generalized gradient approximation and a supercell approach. The atomic and energetic properties of purely on-surface and subsurface oxygen structu
We study the electronic structure and magnetism of 25% Mn substituted cubic Zirconia (ZrO2) with several homogeneous and heterogeneous doping profiles using density-functional theory calculations. We find that all doping profiles show half-metallic f
The effect of lithium vacancies in the hexagonal structure of $alpha-$Li$_3$N, is studied within the framework of density functional theory. Vacancies ($square$) substituting for lithium in $alpha-$Li$_2$(Li$_{1-x}square_x$)N are treated within the c