ﻻ يوجد ملخص باللغة العربية
We study gravitational collapse of low-metallicity gas clouds and the formation of protostars by three-dimensional hydrodynamic simulations. Grain growth, non-equilibrium chemistry, molecular cooling, and chemical heating are solved in a self-consistent manner for the first time. We employ the realistic initial conditions for the abundances of metal and dust, and the dust size distribution obtained from recent Population III supernova calculations. We also introduce the state-of-the-art particle splitting method based on the Voronoi tessellation and achieve an extremely high mass resolution of ~10^{-5} Msun (10 earth masses) in the central region. We follow the thermal evolution of several early clouds with various metallicities. We show that the condition for cloud fragmentation depends not only on the gas metallicity but also on the collapse timescale. In many cases, the cloud fragmentation is prevented by the chemical heating owing to molecular hydrogen formation even though dust cooling becomes effective. Meanwhile, in several cases, efficient OH and H2O cooling promotes the cloud elongation, and then cloud filamentation is driven by dust thermal emission as a precursor of eventual fragmentation. While the filament fragmentation is driven by rapid gas cooling with >10^{-5} Zsun, fragmentation occurs in a different manner by the self-gravity of a circumstellar disk with <10^{-5} Zsun. We use a semi-analytic model to estimate the number fraction of the clouds which undergo the filament fragmentation to be a several percents with 10^{-5}--10^{-4} Zsun. Overall, our simulations show a viable formation path of the recently discovered Galactic low-mass stars with extremely small metallicities.
The Magellanic Clouds provide the only laboratory to study the effect of metallicity and galaxy mass on molecular gas and star formation at high (~20 pc) resolution. We use the dust emission from HERITAGE Herschel data to map the molecular gas in the
We study low-metallicity star formation with a set of high-resolution hydrodynamics simulations for various gas metallicities over a wide range $0$--$10^{-3} {rm Z}_{bigodot}$. Our simulations follow non-equilibrium chemistry and radiative cooling b
The chemical enrichment in the interstellar medium (ISM) of galaxies is regulated by several physical processes: stellar evolution, grain formation and destruction, galactic inflows and outflows. Understanding such processes is essential to follow th
Models of galaxy formation predict that gas accretion from the cosmic web is a primary driver of star formation over cosmic history. Except in very dense environments where galaxy mergers are also important, model galaxies feed from cold streams of g
High mass X-ray binaries (HMXBs) may have had a significant impact on the heating of the intergalactic medium in the early universe. Study of HMXBs in nearby, low metallicity galaxies that are local analogues to early galaxies can help us understand