ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibration and GEANT4 Simulations of the Phase II Proton Compute Tomography (pCT) Range Stack Detector

108   0   0.0 ( 0 )
 نشر من قبل Sergey Uzunyan
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. A. Uzunyan




اسأل ChatGPT حول البحث

Northern Illinois University in collaboration with Fermi National Accelerator Laboratory (FNAL) and Delhi University has been designing and building a proton CT scanner for applications in proton treatment planning. The Phase II proton CT scanner consists of eight planes of tracking detectors with two X and two Y coordinate measurements both before and after the patient. In addition, a range stack detector consisting of a stack of thin scintillator tiles, arranged in twelve eight-tile frames, is used to determine the water equivalent path length (WEPL) of each track through the patient. The X-Y coordinates and WEPL are required input for image reconstruction software to find the relative (proton) stopping powers (RSP) value of each voxel in the patient and generate a corresponding 3D image. In this Note we describe tests conducted in 2015 at the proton beam at the Central DuPage Hospital in Warrenville, IL, focusing on the range stack calibration procedure and comparisons with the GEANT~4 range stack simulation.



قيم البحث

اقرأ أيضاً

124 - S. A. Uzunyan 2013
We describe the development of a proton Computed Tomography (pCT) scanner at Northern Illinois University (NIU) in collaboration with Fermilab and Delhi University. This paper provides an overview of major components of the scanner and a detailed description of the data acquisition system (DAQ).
The European Spallation Source (ESS) is the worlds next generation spallation-based neutron source. The research conducted at ESS will yield in the discovery and development of new materials including the fields of manufacturing, pharmaceuticals, aer ospace, engines, plastics, energy, telecommunications, transportation, information technology and biotechnology. The spallation source will deliver an unprecedented neutron flux. In particular, the reflectometers selected for construction, ESTIA and FREIA, have to fulfill challenging requirements. Local incident peak rate can reach 10$^5$~Hz/mm$^2$. For new science to be addressed, the spatial resolution is aimed to be less than 1 mm with a desired scattering of 10$^{-4}$ (peak-to-tail ratio). The latter requirement is approximately two orders of magnitude better than the current state-of-the-art detectors. The main aim of this work is to quantify the cumulative contribution of various detector components to the scattering of neutrons and to prove that the respective effect is within the requirements set for the Multi-Blade detector by the ESS reflectometers. To this end, different sets of geometry and beam parameters are investigated, with primary focus on the cathode coating and the detector window thickness.
Geant4 simulations play a crucial role in the analysis and interpretation of experiments providing low energy precision tests of the Standard Model. This paper focuses on the accuracy of the description of the electron processes in the energy range b etween 100 and 1000 keV. The effect of the different simulation parameters and multiple scattering models on the backscattering coefficients is investigated. Simulations of the response of HPGe and passivated implanted planar Si detectors to beta{} particles are compared to experimental results. An overall good agreement is found between Geant4 simulations and experimental data.
We have developed a low-energy electron recoil (ER) calibration method with $^{220}$Rn for the PandaX-II detector. $^{220}$Rn, emanated from natural thorium compounds, was fed into the detector through the xenon purification system. From 2017 to 2019 , we performed three dedicated calibration campaigns with different radon sources. We studied the detector response to $alpha$, $beta$, and $gamma$ particles with focus on low energy ER events. During the runs in 2017 and 2018, the amount of radioactivity of $^{222}$Rn were on the order of 1% of that of $^{220}$Rn and thorium particulate contamination was negligible, especially in 2018. We also measured the background contribution from $^{214}$Pb for the first time in PandaX-II with the help from a $^{222}$Rn injection. Calibration strategy with $^{220}$Rn and $^{222}$Rn will be implemented in the upcoming PandaX-4T experiment and can be useful for other xenon-based detectors as well.
102 - W. Krzemien , D. Alfs , P. Bialas 2015
Modern TOF-PET scanner systems require high-speed computing resources for efficient data processing, monitoring and image reconstruction. In this article we present the data flow and software architecture for the novel TOF-PET scanner developed by th e J-PET collaboration. We discuss the data acquisition system, reconstruction framework and image reconstruction software. Also, the concept of computing outside hospitals in the remote centers such as Swierk Computing Centre in Poland is presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا