ﻻ يوجد ملخص باللغة العربية
We discuss the time-dependent formulation of perturbation theory in the context of the interacting zeroth-order Hamiltonians that appear in multi-reference situations. As an example, we present a time-dependent formulation and implementation of second-order n-electron valence perturbation theory. The resulting t-NEVPT2 method yields the fully uncontracted n-electron valence perturbation wavefunction and energy, but has a lower computational scaling than the usual contracted variants, and also avoids the construction of high-order density matrices and the diagonalization of metrics. We present results of t-NEVPT2 for the water, nitrogen, carbon, and chromium molecules, and outline directions for the future.
We present a multi-reference generalization of the algebraic diagrammatic construction theory (ADC) [J. Schirmer, Phys. Rev. A 26, 2395 (1982)] for excited electronic states. The resulting multi-reference ADC approach (MR-ADC) can be efficiently and
We present a new release of the turboTDDFT code featuring an implementation of hybrid functionals, a recently introduced pseudo-Hermitian variant of the Liouville-Lanczos approach to time-dependent density-functional perturbation theory, and a newly
We calculate the high-harmonic generation (HHG) spectra, strong-field ionization, and time-dependent dipole-moment of Ne using explicitly time-dependent optimized second-order many-body perturbation method (TD-OMP2) where both orbitals and amplitudes
The accurate electronic structure calculation for strongly correlated chemical systems requires an adequate description for both static and dynamic electron correlation, and is a persistent challenge for quantum chemistry. In order to account for sta
The Kohn-Sham approach to time-dependent density-functional theory (TDDFT) can be formulated, in principle exactly, by invoking the force-balance equation for the density, which leads to an explicit expression for the exchange-correlation potential a