A novel approach which uses Fibre Bragg Grating (FBG) sensors has been utilised to assess and monitor the flatness of Gaseous Electron Multipliers (GEM) foils. The setup layout and preliminary results are presented.
We present a novel application of Fiber Bragg Grating (FBG) sensors in the construction and characterisation of Micro Pattern Gaseous Detector (MPGD), with particular attention to the realisation of the largest triple (Gas electron Multiplier) GEM ch
ambers so far operated, the GE1/1 chambers of the CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of about 0.5 m2 active area each, employing three GEM foils per chamber, to be installed in the forward region of the CMS endcap during the long shutdown of LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM foils that are mechanically stretched in order to secure their flatness and the consequent uniform performance of the GE1/1 chamber across its whole active surface. So far FBGs have been used in high energy physics mainly as high precision positioning and re-positioning sensors and as low cost, easy to mount, low space consuming temperature sensors. FBGs are also commonly used for very precise strain measurements in material studies. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used to determine the optimal mechanical tension applied and to characterise the mechanical tension that should be applied to the foils. We discuss the results of the test done on a full-sized GE1/1 final prototype, the studies done to fully characterise the GEM material, how this information was used to define a standard assembly procedure and possible future developments.
Fiber Bragg Grating (FBG) sensors have been so far mainly used in high energy physics (HEP) as high precision positioning and re-positioning sensors and as low cost, easy to mount, radiation hard and low space- consuming temperature and humidity devi
ces. FBGs are also commonly used for very precise strain measurements. In this work we present a novel use of FBGs as flatness and mechanical tensioning sensors applied to the wide Gas Electron Multiplier (GEM) foils of the GE1/1 chambers of the Compact Muon Solenoid (CMS) experiment at Large Hadron Collider (LHC) of CERN. A network of FBG sensors has been used to determine the optimal mechanical tension applied and to characterize the mechanical stress applied to the foils. The preliminary results of the test performed on a full size GE1/1 final prototype and possible future developments will be discussed.
Thermoelectric power sensors can now be used as transfer standards, instead of bolometers, in the microcalorimeter technique. This alternative has the technical advantages to be less sensitive to absolute temperature and not downward frequency limite
d. At INRiM the high frequency power standards are now based on coaxial thermocouples from dc to 34 GHz. Modified commercial thermocouple mounts in 7 mm and 3.5 mm coaxial line are used to realize the national power standard with an accuracy ranging from 0.03 % to 1 % in the mentioned frequency range.
Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $mu$m, produced at CiS, and 100-200 $mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-ou
t chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of $1.4times10^{16}n_{eq}/cm^{2}$.
Several future high-energy physics facilities are currently being planned. The proposed projects include high energy $e^+ e^-$ circular and linear colliders, hadron colliders and muon colliders, while the Electron-Ion Collider (EIC) has already been
approved for construction at the Brookhaven National Laboratory. Each proposal has its own advantages and disadvantages in term of readiness, cost, schedule and physics reach, and each proposal requires the design and production of specific new detectors. This paper first presents the performances required to the future silicon tracking systems at the various new facilities, and then it illustrates a few possibilities for the realization of such silicon trackers. The challenges posed by the future facilities require a new family of silicon detectors, where features such as impact ionization, radiation damage saturation, charge sharing, and analog readout are exploited to meet these new demands.