ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a novel neural network structure, namely emph{feedforward sequential memory networks (FSMN)}, to model long-term dependency in time series without using recurrent feedback. The proposed FSMN is a standard fully-connected feedforward neural network equipped with some learnable memory blocks in its hidden layers. The memory blocks use a tapped-delay line structure to encode the long context information into a fixed-size representation as short-term memory mechanism. We have evaluated the proposed FSMNs in several standard benchmark tasks, including speech recognition and language modelling. Experimental results have shown FSMNs significantly outperform the conventional recurrent neural networks (RNN), including LSTMs, in modeling sequential signals like speech or language. Moreover, FSMNs can be learned much more reliably and faster than RNNs or LSTMs due to the inherent non-recurrent model structure.
We introduce a new structure for memory neural networks, called feedforward sequential memory networks (FSMN), which can learn long-term dependency without using recurrent feedback. The proposed FSMN is a standard feedforward neural networks equipped
Much sequential data exhibits highly non-uniform information distribution. This cannot be correctly modeled by traditional Long Short-Term Memory (LSTM). To address that, recent works have extended LSTM by adding more activations between adjacent inp
We investigate a new method to augment recurrent neural networks with extra memory without increasing the number of network parameters. The system has an associative memory based on complex-valued vectors and is closely related to Holographic Reduced
Associative memory using fast weights is a short-term memory mechanism that substantially improves the memory capacity and time scale of recurrent neural networks (RNNs). As recent studies introduced fast weights only to regular RNNs, it is unknown w
In this paper, we extend the deep long short-term memory (DLSTM) recurrent neural networks by introducing gated direct connections between memory cells in adjacent layers. These direct links, called highway connections, enable unimpeded information f