ﻻ يوجد ملخص باللغة العربية
Covariant affine integral quantization of the half-plane is studied and applied to the motion of a particle on the half-line. We examine the consequences of different quantizer operators built from weight functions on the half-plane. To illustrate the procedure, we examine two particular choices of the weight function, yielding thermal density operators and affine inversion respectively. The former gives rise to a temperature-dependent probability distribution on the half-plane whereas the later yields the usual canonical quantization and a quasi-probability distribution (affine Wigner function) which is real, marginal in both momentum p and position q.
Covariant affine integral quantization is studied and applied to the motion of a particle in a punctured plane Pp, for which the phase space is Pp X plane. We examine the consequences of different quantizer operators built from weight functions on th
We present a list of formulae useful for Weyl-Heisenberg integral quantizations, with arbitrary weight, of functions or distributions on the plane. Most of these formulae are known, others are original. The list encompasses particular cases like Weyl
We present a consistent, generally covariant quantization of light for non-vacuum birefringent, Lorentz-symmetry breaking electrodynamics in the context of the Standard Model Extension. We find that the number of light quanta in the field is not fram
The path integral quantization method is applied to a relativistically covariant version of the Hopfield model, which represents a very interesting mesoscopic framework for the description of the interaction between quantum light and dielectric quant
Error correcting codes with a universal set of transversal gates are the desiderata of realising quantum computing. Such codes, however, are ruled out by the Eastin-Knill theorem. Moreover, it also rules out codes which are covariant with respect to