ﻻ يوجد ملخص باللغة العربية
We propose a new approach to inverse reinforcement learning (IRL) based on the deep Gaussian process (deep GP) model, which is capable of learning complicated reward structures with few demonstrations. Our model stacks multiple latent GP layers to learn abstract representations of the state feature space, which is linked to the demonstrations through the Maximum Entropy learning framework. Incorporating the IRL engine into the nonlinear latent structure renders existing deep GP inference approaches intractable. To tackle this, we develop a non-standard variational approximation framework which extends previous inference schemes. This allows for approximate Bayesian treatment of the feature space and guards against overfitting. Carrying out representation and inverse reinforcement learning simultaneously within our model outperforms state-of-the-art approaches, as we demonstrate with experiments on standard benchmarks (object world,highway driving) and a new benchmark (binary world).
Imitation learning is well-suited for robotic tasks where it is difficult to directly program the behavior or specify a cost for optimal control. In this work, we propose a method for learning the reward function (and the corresponding policy) to mat
We present relay policy learning, a method for imitation and reinforcement learning that can solve multi-stage, long-horizon robotic tasks. This general and universally-applicable, two-phase approach consists of an imitation learning stage that produ
The goal of the inverse reinforcement learning (IRL) problem is to recover the reward functions from expert demonstrations. However, the IRL problem like any ill-posed inverse problem suffers the congenital defect that the policy may be optimal for m
At an early age, human infants are able to learn and build a model of the world very quickly by constantly observing and interacting with objects around them. One of the most fundamental intuitions human infants acquire is intuitive physics. Human in
There has been an increased interest in discovering heuristics for combinatorial problems on graphs through machine learning. While existing techniques have primarily focused on obtaining high-quality solutions, scalability to billion-sized graphs ha