ترغب بنشر مسار تعليمي؟ اضغط هنا

Heavy-flavour transport: from large to small systems

65   0   0.0 ( 0 )
 نشر من قبل Andrea Beraudo
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Predictions for heavy-flavour production in relativistic heavy-ion experiments provided by the POWLANG transport setup, including now also an in-medium hadronization model, are displayed, After showing some representative findings for the Au-Au and Pb-Pb cases, a special focus will be devoted to the results obtained in the small systems formed in proton(deuteron)-nucleus collisions, where recent experimental data suggest the possible formation of a medium featuring a collective behaviour.



قيم البحث

اقرأ أيضاً

The propagation of the heavy quarks produced in relativistic nucleus-nucleus collisions at RHIC and LHC is studied within the framework of Langevin dynamics in the background of an expanding deconfined medium described by ideal and viscous hydrodynam ics. The transport coefficients entering into the relativistic Langevin equation are evaluated by matching the hard-thermal-loop result for soft collisions with a perturbative QCD calculation for hard scatterings. The heavy-quark spectra thus obtained are employed to compute the differential cross sections, the nuclear modification factors R_AA and the elliptic flow coefficients v_2 of electrons from heavy-flavour decay.
63 - C. Lourenco , H. K. Wohri 2006
We review the hadro-production data presently available on open charm and beauty absolute production cross-sections, collected by experiments at CERN, DESY and Fermilab. The published charm production cross-section values are updated, in particular f or the time evolution of the branching ratios. These measurements are compared to LO pQCD calculations, as a function of the collision energy, using recent parametrisations of the parton distribution functions. We then estimate, including nuclear effects of the parton densities, the charm and beauty production cross-sections relevant for measurements at SPS and RHIC energies, in proton-proton, proton-nucleus and nucleus-nucleus collisions. The calculations are also compared with measurements of single D and B kinematical distributions, and DDbar pair correlations. We finish with two brief comments, concerning the importance of beauty production as a feed-down source of J/psi production, and open charm measurements performed using leptonic decays.
Transverse momentum spectra of identified particles produced in heavy-ion collisions at the Large Hadron Collider are described with relativistic fluid dynamics. We perform a systematic comparison of experimental data for pions, kaons and protons up to a transverse momentum of 3 GeV$/c$ with calculations using the FluiduM code package to solve the evolution equations of fluid dynamics, the TrENTo model to describe the initial state and the FastReso code to take resonance decays into account. Using data in five centrality classes at the center-of-mass collision energy per nucleon pair $sqrt{s_text{NN}}=2.76,text{TeV}$, we determine systematically the most likely parameters of our theoretical model including the shear and bulk viscosity to entropy ratios, the initialization time, initial density and freeze-out temperature through a global search and quantify their posterior probability. This is facilitated by the very efficient numerical implementation of FluiduM and FastReso. Based on the most likely model parameters we present predictions for the transverse momentum spectra of multi-strange hadrons as well as identified particle spectra from Pb-Pb collisions at $sqrt{s_text{NN}}=5.02,text{TeV}$.
285 - M. Monteno 2011
The stochastic dynamics of c and b quarks in the fireball created in nucleus-nucleus collisions at RHIC and LHC is studied employing a relativistic Langevin equation, based on a picture of multiple uncorrelated random collisions with the medium. Heav y-quark transport coefficients are evaluated within a pQCD approach, with a proper HTL resummation of medium effects for soft scatterings. The Langevin equation is embedded in a multi-step setup developed to study heavy-flavor observables in pp and AA collisions, starting from a NLO pQCD calculation of initial heavy-quark yields, complemented in the nuclear case by shadowing corrections, k_T-broadening and nuclear geometry effects. Then, only for AA collisions, the Langevin equation is solved numerically in a background medium described by relativistic hydrodynamics. Finally, the propagated heavy quarks are made hadronize and decay into electrons. Results for the nuclear modification factor R_AA of heavy-flavor hadrons and electrons from their semi-leptonic decays are provided, both for RHIC and LHC beam energies.
Within a multi-phase transport model with string melting scenario, jet transport parameter $hat{q}$ is calculated in Au+Au collisions at $sqrt{s_{NN} } $= 200 GeV and Pb+Pb collisions at $sqrt{s_{NN} } $= 2.76 TeV. The $hat{q}$ increases with the inc reasing of jet energy for both partonic phase and hadronic phase. The energy and path length dependences of $hat{q}$ in full heavy-ion evolution are consistent with the expectations of jet quenching. The correlation between jet transport parameter $hat{q}$ and dijet transverse momentum asymmetry $A_{J}$ is mainly investigated, which discloses that a larger $hat{q}$ corresponds to a larger $A_{J}$. It supports a consistent jet energy loss picture from the two viewpoints of single jet and dijet. It is proposed to measure dijet asymmetry distributions with different jet transport parameter ranges as a new potential method to study jet quenching physics in high energy heavy-ion collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا