Silicon solar cells dominate the solar cell market with record lab efficiencies reaching almost 26%. However, after 60 years of research, this efficiency saturated close to the theoretical limit for silicon, and radically new approaches are needed to further improve the efficiency. Here we present parallel-connected tandem solar cells based on down-conversion via singlet fission. This design allows raising the theoretical power conversion efficiency limit to 45% with far superior stability under changing sunlight conditions in comparison to traditional series tandems. We experimentally demonstrate a silicon/pentacene parallel tandem solar cell that exceeds 100% external quantum efficiency at the main absorption peak of pentacene, showing efficient photocurrent addition and proving this design as a realistic prospect for real-world applications.