ﻻ يوجد ملخص باللغة العربية
Diffusion is the macroscopic manifestation of disordered molecular motion. Mathematically, diffusion equations are partial differential equations describing the fluid-like large-scale dynamics of parcels of molecules. Spatially inhomogeneous systems affect in a position-dependent way the average motion of molecules; thus, diffusion equations have to reflect somehow this fact within their structure. It is known since long that in this case an ambiguity arises: there are several ways of writing down diffusion equations containing space dependence within their parameters. These ways are all potentially valid but not equivalent, meaning that the different diffusion equations yield different solutions for the same data. The ambiguity can only be resolved at the microscopic level: a model for the stochastic dynamics of the individual molecules must be provided, and a well-defined diffusion equation then arises as the long-wavelength limit of this dynamics. In this work we introduce and employ the integro-differential Master Equation (ME) as a tool for describing the microscopic dynamics. We show that is possible to provide a parameterized version of the ME, in terms of a single numerical parameter (alpha), such that the different expressions for the diffusive fluxes are recovered at different values of alpha. This work aims to fill a gap in the literature, where the ME was shown to deliver just one diffusive limit. In the second part of the paper some numerical computer models are introduced, both to support analytical considerations, and to extend the scope of the ME to more sophisticated scenarios, beyond the simplest alpha-parameterization.
Scale-space energy density function, $E(mathbf{x}, mathbf{r})$, is defined as the derivative of the two-point velocity correlation. The function E describes the turbulent kinetic energy density of scale r at a location x and can be considered as the
We investigate the elastoviscoplastic flow through porous media by numerical simulations. We solve the Navier-Stokes equations combined with the elastoviscoplastic model proposed by Saramito for the stress tensor evolution. In this model, the materia
Vortices play an unique role in heat and momentum transports in astro- and geo-physics, and it is also the origin of the Earths dynamo. A question existing for a long time is whether the movement of vortices can be predicted or understood based on th
Using molecular dynamics, we study the nucleation and stability of bulk nanobubble clusters. We study the formation, growth, and final size of bulk nanobubbles. We find that, as long as the bubble-bubble interspacing is small enough, bulk nanobubbles
Understanding the recovery of gas from reservoirs featuring pervasive nanopores is essential for effective shale gas extraction. Classical theories cannot accurately predict such gas recovery and many experimental observations are not well understood