ﻻ يوجد ملخص باللغة العربية
We describe the design, construction and operation of a versatile dual-species Zeeman slower for both Cs and Yb, which is easily adaptable for use with other alkali metals and alkaline earths. With the aid of analytic models and numerical simulation of decelerator action, we highlight several real-world problems affecting the performance of a slower and discuss effective solutions. To capture Yb into a magneto-optical trap (MOT), we use the broad $^1S_0$ to $^1P_1$ transition at 399 nm for the slower and the narrow $^1S_0$ to $^3P_1$ intercombination line at 556 nm for the MOT. The Cs MOT and slower both use the D2 line ($6^2S_{1/2}$ to $6^2P_{3/2}$) at 852 nm. We demonstrate that within a few seconds the Zeeman slower loads more than $10^9$ Yb atoms and $10^8$ Cs atoms into their respective MOTs. These are ideal starting numbers for further experiments on ultracold mixtures and molecules.
We present a dual-species effusive source and Zeeman slower designed to produce slow atomic beams of two elements with a large mass difference and with very different oven temperature requirements. We demonstrate this design for the case of $^6$Li an
We present a novel slowing scheme for beams of laser-coolable diatomic molecules reminiscent of Zeeman slowing of atomic beams. The scheme results in efficient compression of the 1-dimensional velocity distribution to velocities trappable by magnetic
We report on an investigation of a method that applies simultaneously two different mathematical models in order to optimize the design of a Zeeman Slower towards the implementation of ultra cold atoms in solid state physics. We introduce the impleme
We describe an apparatus designed to trap and cool a Yb and Cs mixture. The apparatus consists of a dual species effusive oven source, dual species Zeeman slower, magneto-optical traps in a single ultra-high vacuum science chamber, and the associated
We present a thorough analysis of a Zeeman slower for sodium atoms made of permanent magnets in a Halbach configuration. Due to the orientation of the magnetic field, the polarisation of the slowing laser beam cannot be purely circular leading to opt