ﻻ يوجد ملخص باللغة العربية
An adiabatic time evolution of a closed quantum system connects eigenspaces of initial and final Hermitian Hamiltonians for slowly driven systems, or, unitary Floquet operators for slowly modulated driven systems. We show that the connection of eigenspaces depends on a topological property of the adiabatic paths for given initial and final points. An example in slowly modulated periodically driven systems is shown. These analysis are based on the topological analysis of the exotic quantum holonomy in adiabatic closed paths.
We import the tools of Morse theory to study quantum adiabatic evolution, the core mechanism in adiabatic quantum computations (AQC). AQC is computationally equivalent to the (pre-eminent paradigm) of the Gate model but less error-prone, so it is ide
We present generalized adiabatic theorems for closed and open quantum systems that can be applied to slow modulations of rapidly varying fields, such as oscillatory fields that occur in optical experiments and light induced processes. The generalized
One of the fundamental physical limits on the speed of time evolution of a quantum state is known in the form of the celebrated Mandelshtam-Tamm inequality. This inequality gives an answer to the question on how fast an isolated quantum system can ev
We describe a general methodology for enhancing the efficiency of adiabatic quantum computations (AQC). It consists of homotopically deforming the original Hamiltonian surface in a way that the redistribution of the Gaussian curvature weakens the eff
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,ngeq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(