ترغب بنشر مسار تعليمي؟ اضغط هنا

Cassini in situ observations of long-duration magnetic reconnection in Saturns magnetotail

99   0   0.0 ( 0 )
 نشر من قبل Chris Arridge
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic reconnection is a fundamental process in solar system and astrophysical plasmas, through which stored magnetic energy associated with current sheets is converted into thermal, kinetic and wave energy. Magnetic reconnection is also thought to be a key process involved in shedding internally produced plasma from the giant magnetospheres at Jupiter and Saturn through topological reconfiguration of the magnetic field. The region where magnetic fields reconnect is known as the diffusion region and in this letter we report on the first encounter of the Cassini spacecraft with a diffusion region in Saturns magnetotail. The data also show evidence of magnetic reconnection over a period of 19 h revealing that reconnection can, in fact, act for prolonged intervals in a rapidly rotating magnetosphere. We show that reconnection can be a significant pathway for internal plasma loss at Saturn. This counters the view of reconnection as a transient method of internal plasma loss at Saturn. These results, although directly relating to the magnetosphere of Saturn, have applications in the understanding of other rapidly rotating magnetospheres, including that of Jupiter and other astrophysical bodies.



قيم البحث

اقرأ أيضاً

The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar wind. The combination of both ground- and space-based observations at Earth have enabled considerable progress to be made in understanding the terrestrial cusp and its role in the coupling of the magnetosphere to the solar wind via the polar magnetosphere. Voyager 2 fully explored Neptunes cusp in 1989 but highly inclined orbits of the Cassini spacecraft at Saturn present the most recent opportunity to repeatedly studying the polar magnetosphere of a rapidly rotating planet. In this paper we discuss observations made by Cassini during two passes through Saturns southern polar magnetosphere. Our main findings are that i) Cassini directly encounters the southern polar cusp with evidence for the entry of magnetosheath plasma into the cusp via magnetopause reconnection, ii) magnetopause reconnection and entry of plasma into the cusp can occur over a range of solar wind conditions, and iii) double cusp morphologies are consistent with the position of the cusp oscillating in phase with Saturns global magnetospheric periodicities.
492 - C.J. Xiao , X.G. Wang , Z.Y. Pu 2006
Magnetic reconnection is one of the most important processes in astrophysical, space and laboratory plasmas. Identifying the structure around the point at which the magnetic field lines break and subsequently reform, known as the magnetic null point, is crucial to improving our understanding reconnection. But owing to the inherently three-dimensional nature of this process, magnetic nulls are only detectable through measurements obtained simultaneously from at least four points in space. Using data collected by the four spacecraft of the Cluster constellation as they traversed a diffusion region in the Earths magnetotail on 15 September, 2001, we report here the first in situ evidence for the structure of an isolated magnetic null. The results indicate that it has a positive-spiral structure whose spatial extent is of the same order as the local ion inertial length scale, suggesting that the Hall effect could play an important role in 3D reconnection dynamics.
Every 19 years, Saturn passes through Jupiters flapping magnetotail. Here, we report Chandra X-ray observations of Saturn planned to coincide with this rare planetary alignment and to analyse Saturns magnetospheric response when transitioning to this unique parameter space. We analyse three Directors Discretionary Time (DDT) observations from the High Resolution Camera (HRC-I) on-board Chandra, taken on November 19, 21 and 23 2020 with the aim to find auroral and/or disk emissions. We infer the conditions in the kronian system by looking at coincident soft X-ray solar flux data from the Geostationary Operational Environmental Satellite (GOES) and Hubble Space Telescope (HST) observations of Saturns ultraviolet (UV) auroral emissions. The large Saturn-Sun-Earth angle during this time would mean that most flares from the Earth-facing side of the Sun would not have impacted Saturn. We find no significant detection of Saturns disk or auroral emissions in any of our observations. We calculate the 3$sigma$ upper band energy flux of Saturn during this time to be 0.9 - 3.04 $times$ 10$^{14}$ erg cm$^{-2}$ s$^{-1}$ which agrees with fluxes found from previous modelled spectra of the disk emissions. We conclude by discussing the implications of this non-detection and how it is imperative that the next fleet of X-ray telescope (such as Athena and the Lynx mission concept) continue to observe Saturn with their improved spatial and spectral resolution and very enhanced sensitivity to help us finally solve the mysteries behind Saturns apparently elusive X-ray aurora.
131 - Z. Voros , M.P. Leubner , A. Runov 2009
Magnetic reconnection (MR) in Earths magnetotail is usually followed by a systemwide redistribution of explosively released kinetic and thermal energy. Recently, multispacecraft observations from the THEMIS mission were used to study localized explos ions associated with MR in the magnetotail so as to understand subsequent Earthward propagation of MR outbursts during substorms. Here we investigate plasma and magnetic field fluctuations/structures associated with MR exhaust and ion-ion kink mode instability during a well documented MR event. Generation, evolution and fading of kinklike oscillations are followed over a distance of 70 000 km from the reconnection site in the midmagnetotail to the more dipolar region near the Earth. We have found that the kink oscillations driven by different ion populations within the outflow region can be at least 25 000 km from the reconnection site.
115 - Seiji Zenitani , Iku Shinohara , 2012
Signatures of the dissipation region of collisionless magnetic reconnection are investigated by the Geotail spacecraft for the 15 May 2003 event. The energy dissipation in the rest frame of the electrons bulk flow is considered in an approximate form D*_e, which is validated by a particle-in-cell simulation. The dissipation measure is directly evaluated from the {plasma moments}, the electric field, and the magnetic field. Using D*_e, a compact dissipation region is successfully detected in the vicinity of the possible X-point in Geotail data. The dissipation rate is 45 pWm**{-3}. The length of the dissipation region is estimated to 1--2 local ion inertial length. The Lorentz work W, the work rate by Lorentz force to plasmas, is also introduced. It is positive over the reconnection region and it has a peak around the pileup region away from the X-point. These new measures D*_e and W provide useful information to understand the reconnection structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا