We consider the long time well-posedness of the Cauchy problem with large Sobolev data for a class of nonlinear Schrodinger equations (NLS) on $mathbb{R}^2$ with power nonlinearities of arbitrary odd degree. Specifically, the method in this paper applies to those NLS equations having either elliptic signature with a defocusing nonlinearity, or else having an indefinite signature. By rigorously justifying that these equations govern the modulation of wave packet-like solutions to an artificially constructed equation with an advantageous structure, we show that a priori every subcritical inhomogeneous Sobolev norm of the solution increases at most polynomially in time. Global well-posedness follows by a standard application of the subcritical local theory.