ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergent eigenstate solution to quantum dynamics far from equilibrium

93   0   0.0 ( 0 )
 نشر من قبل Lev Vidmar
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum dynamics of interacting many-body systems has become a unique venue for the realization of novel states of matter. Here we unveil a new class of nonequilibrium states that are eigenstates of an emergent local Hamiltonian. The latter is explicitly time dependent and, even though it does not commute with the physical Hamiltonian, it behaves as a conserved quantity of the time-evolving system. We discuss two examples in which the emergent eigenstate solution can be applied for an extensive (in system size) time: transport in one-dimensional lattices with initial particle (or spin) imbalance, and sudden expansion of quantum gases in optical lattices. We focus on noninteracting spinless fermions, hard-core bosons, and the Heisenberg model. We show that current-carrying states can be ground states of emergent local Hamiltonians, and that they can exhibit a quasimomentum distribution function that is peaked at nonzero (and tunable) quasimomentum. We also show that time-evolving states can be highly-excited eigenstates of emergent local Hamiltonians, with an entanglement entropy that does not exhibit volume-law scaling.



قيم البحث

اقرأ أيضاً

The observable properties of topological quantum matter are often described by topological field theories. We here demonstrate that this principle extends beyond thermal equilibrium. To this end, we construct a model of two-dimensional driven open dy namics with a Chern insulator steady state. Within a Keldysh field theory approach, we show that under mild assumptions - particle number conservation and purity of the stationary state - an abelian Chern-Simons theory describes its response to external perturbations. As a corollary, we predict chiral edge modes stabilized by a dissipative bulk.
Complexity of dynamics is at the core of quantum many-body chaos and exhibits a hierarchical feature: higher-order complexity implies more chaotic dynamics. Conventional ergodicity in thermalization processes is a manifestation of the lowest order co mplexity, which is represented by the eigenstate thermalization hypothesis (ETH) stating that individual energy eigenstates are thermal. Here, we propose a higher-order generalization of the ETH, named the $ k $-ETH ($ k=1,2,dots $), to quantify higher-order complexity of quantum many-body dynamics at the level of individual energy eigenstates, where the lowest order ETH (1-ETH) is the conventional ETH. As a non-trivial contribution of the higher-order ETH, we show that the $ k $-ETH with $ kgeq 2 $ implies a universal behavior of the $ k $th Renyi entanglement entropy of individual energy eigenstates. In particular, the Page correction of the entanglement entropy originates from the higher-order ETH, while as is well known, the volume law can be accounted for by the 1-ETH. We numerically verify that the 2-ETH approximately holds for a nonintegrable system, but does not hold in the integrable case. To further investigate the information-theoretic feature behind the $ k $-ETH, we introduce a concept named a partial unitary $ k $-design (PU $ k $-design), which is an approximation of the Haar random unitary up to the $ k $th moment, where partial means that only a limited number of observables are accessible. The $ k $-ETH is a special case of a PU $ k $-design for the ensemble of Hamiltonian dynamics with random-time sampling. In addition, we discuss the relationship between the higher-order ETH and information scrambling quantified by out-of-time-ordered correlators. Our framework provides a unified view on thermalization, entanglement entropy, and unitary $ k $-designs, leading to deeper characterization of higher-order quantum complexity.
We study a quantum spin-1/2 chain that is dual to the canonical problem of non-equilibrium Kawasaki dynamics of a classical Ising chain coupled to a thermal bath. The Hamiltonian is obtained for the general disordered case with non-uniform Ising coup lings. The quantum spin chain (dubbed Ising-Kawasaki) is stoquastic, and depends on the Ising couplings normalized by the baths temperature. We give its exact ground states. Proceeding with uniform couplings, we study the one- and two-magnon excitations. Solutions for the latter are derived via a Bethe Ansatz scheme. In the antiferromagnetic regime, the two-magnon branch states show intricate behavior, especially regarding their hybridization with the continuum. We find that that the gapless chain hosts multiple dynamics at low energy as seen through the presence of multiple dynamical critical exponents. Finally, we analyze the full energy level spacing distribution as a function of the Ising coupling. We conclude that the system is non-integrable for generic parameters, or equivalently, that the corresponding non-equilibrium classical dynamics are ergodic.
229 - Kirill Boguslavski 2018
In recent years, there have been important advances in understanding the far-from-equilibrium dynamics in different physical systems. In ultra-relativistic heavy-ion collisions, the combination of different methods led to the development of a weak-co upling description of the early-time dynamics. The numerical observation of a classical universal attractor played a crucial role for this. Such attractors, also known as non-thermal fixed points (NTFPs), have been now predicted for different scalar and gauge theories. An important universal NTFP emerges in scalar theories modeling ultra-cold atoms, inflation or dark matter, and its scaling properties have been recently observed in an ultra-cold atom experiment. In this proceeding, recent progress in selected topics of the far-from-equilibrium evolution in these systems will be discussed. A new method to extract the spectral function numerically is a particularly promising tool to better understand their microscopic properties.
Confinement of excitations induces quasilocalized dynamics in disorder-free isolated quantum many-body systems in one spatial dimension. This occurrence is signalled by severe suppression of quantum correlation spreading and of entanglement growth, l ong-time persistence of spatial inhomogeneities, and long-lived coherent oscillations of local observables. In this work, we present a unified understanding of these dramatic effects. The slow dynamical behavior is shown to be related to the Schwinger effect in quantum electrodynamics. We demonstrate that it is quantitatively captured for long time scales by effective Hamiltonians exhibiting Stark localization of excitations and weak growth of the entanglement entropy for arbitrary coupling strength. This analysis explains the phenomenology of real-time string dynamics investigated in a number of lattice gauge theories, as well as the anomalous dynamics observed in quantum Ising chains after quenches. Our findings establish confinement as a robust mechanism for hindering the approach to equilibrium in translationally-invariant quantum statistical systems with local interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا