ﻻ يوجد ملخص باللغة العربية
Channel-state-information (CSI) feedback methods are considered, especially for massive or very large-scale multiple-input multiple-output (MIMO) systems. To extract essential information from the CSI without redundancy that arises from the highly correlated antennas, a receiver transforms (sparsifies) a correlated CSI vector to an uncorrelated sparse CSI vector by using a Karhunen-Loeve transform (KLT) matrix that consists of the eigen vectors of covariance matrix of CSI vector and feeds back the essential components of the sparse CSI, i.e., a principal component analysis method. A transmitter then recovers the original CSI through the inverse transformation of the feedback vector. Herein, to obtain the covariance matrix at transceiver, we derive analytically the covariance matrix of spatially correlated Rayleigh fading channels based on its statistics including transmit antennas and receive antennas correlation matrices, channel variance, and channel delay profile. With the knowledge of the channel statistics, the transceiver can readily obtain the covariance matrix and KLT matrix. Compression feedback error and bit-error-rate performance of the proposed method are analyzed. Numerical results verify that the proposed method is promising, which reduces significantly the feedback overhead of the massive-MIMO systems with marginal performance degradation from full-CSI feedback (e.g., feedback amount reduction by 80%, i.e., 1/5 of original CSI, with spectral efficiency reduction by only 2%). Furthermore, we show numerically that, for a given limited feedback amount, we can find the optimal number of transmit antennas to achieve the largest spectral efficiency, which is a new design framework.
Massive Multiple-Input Multiple-Output (massive MIMO) is a variant of multi-user MIMO in which the number of antennas at each Base Station (BS) is very large and typically much larger than the number of users simultaneously served. Massive MIMO can b
In this paper, we propose a novel method for efficient implementation of a massive Multiple-Input Multiple-Output (massive MIMO) system with Frequency Division Duplexing (FDD) operation. Our main objective is to reduce the large overhead incurred by
Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave (mmWave) massive multiple-input and multiple-output systems. To solve this problem, we exploit a le
This paper investigates downlink channel estimation in frequency-division duplex (FDD)-based massive multiple-input multiple-output (MIMO) systems. To reduce the overhead of downlink channel estimation and uplink feedback in FDD systems, cascaded pre
The problem of wideband massive MIMO channel estimation is considered. Targeting for low complexity algorithms as well as small training overhead, a compressive sensing (CS) approach is pursued. Unfortunately, due to the Kronecker-type sensing (measu