ﻻ يوجد ملخص باللغة العربية
Suppose we have two players $A$ and $C$, where player $A$ has a string $s[0..u-1]$ and player $C$ has a string $t[0..u-1]$ and none of the two players knows the others string. Assume that $s$ and $t$ are both over an integer alphabet $[sigma]$, where the first string contains $n$ non-zero entries. We would wish to answer to the following basic question. Assuming that $s$ and $t$ differ in at most $k$ positions, how many bits does player $A$ need to send to player $C$ so that he can recover $s$ with certainty? Further, how much time does player $A$ need to spend to compute the sent bits and how much time does player $C$ need to recover the string $s$? This problem has a certain number of applications, for example in databases, where each of the two parties possesses a set of $n$ key-value pairs, where keys are from the universe $[u]$ and values are from $[sigma]$ and usually $nll u$. In this paper, we show a time and message-size optimal Las Vegas reduction from this problem to the problem of systematic error correction of $k$ errors for strings of length $Theta(n)$ over an alphabet of size $2^{Theta(logsigma+log (u/n))}$. The additional running time incurred by the reduction is linear randomized for player $A$ and linear deterministic for player $B$, but the correction works with certainty. When using the popular Reed-Solomon codes, the reduction gives a protocol that transmits $O(k(log u+logsigma))$ bits and runs in time $O(ncdotmathrm{polylog}(n)(log u+logsigma))$ for all values of $k$. The time is randomized for player $A$ (encoding time) and deterministic for player $C$ (decoding time). The space is optimal whenever $kleq (usigma)^{1-Omega(1)}$.
Computing the convolution $Astar B$ of two length-$n$ integer vectors $A,B$ is a core problem in several disciplines. It frequently comes up in algorithms for Knapsack, $k$-SUM, All-Pairs Shortest Paths, and string pattern matching problems. For thes
Dealing with the NP-complete Dominating Set problem on undirected graphs, we demonstrate the power of data reduction by preprocessing from a theoretical as well as a practical side. In particular, we prove that Dominating Set restricted to planar gra
We present a class of numerical algorithms which adapt a quantum error correction scheme to a channel model. Given an encoding and a channel model, it was previously shown that the quantum operation that maximizes the average entanglement fidelity ma
For a generic set of Markovian noise models, the estimation precision of a parameter associated with the Hamiltonian is limited by the $1/sqrt{t}$ scaling where $t$ is the total probing time, in which case the maximal possible quantum improvement in
This paper proposes a novel deep learning-based error correction coding scheme for AWGN channels under the constraint of one-bit quantization in the receivers. Specifically, it is first shown that the optimum error correction code that minimizes the