ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust properties of Lyman break galaxies at $zsim3$

285   0   0.0 ( 0 )
 نشر من قبل Javier \\'Alvarez-M\\'arquez J
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore from a statistical point of view the far-infrared (far-IR) and sub-millimeter (sub-mm) properties of a large sample of LBGs (22,000) at z~3 in the COSMOS field. The large number of galaxies allows us to split it in several bins as a function of UV luminosity, UV slope, and stellar mass to better sample their variety. We perform stacking analysis in PACS (100 and 160 um), SPIRE (250, 350 and 500 um) and AzTEC (1.1 mm) images. Our stacking procedure corrects the biases induced by galaxy clustering and incompleteness of our input catalogue in dense regions. We obtain the full IR spectral energy distributions (SED) of subsamples of LBGs and derive the mean IR luminosity as a function of UV luminosity, UV slope, and stellar mass. The average IRX is roughly constant over the UV luminosity range, with a mean of 7.9 (1.8 mag). However, it is correlated with UV slope, and stellar mass. We investigate using a statistically-controlled stacking analysis as a function of (stellar mass, UV slope) the dispersion of the IRX-UVslope and IRX-M* plane. Our results enable us to study the average relation between star-formation rate (SFR) and stellar mass, and we show that our LBG sample lies on the main sequence of star formation at z~3.



قيم البحث

اقرأ أيضاً

This work explores from a statistical point of view the rest-frame Far-ultraviolet (FUV) to Far-infrared (FIR) emission of a population of Lyman break galaxies (LBGs) at $zsim3$ that cannot be individually detected from current FIR observations. We p erform a stacking analysis over a sample of $sim$17000 LBGs at redshift $2.5<z<3.5$ in the COSMOS field. The sample is binned as a function of UV luminosity ($L_{mathrm{FUV}}$), UV continuum slope ($beta_{mathrm{UV}}$), and stellar mass (M$_{*}$), and then, stacked at optical ($BVriz$ bands), near-infrared ($YJHKs$ bands), IRAC (3.6, 4.5, 5.6 and 8.0 $mu$m), MIPS (24$mu$m), PACS (100 and 160~$mu$m), SPIRE (250, 350, and 500~$mu$m), and AzTEC (1.1mm) observations. We obtain thirty rest-frame FUV-to-FIR spectral energy distribution (SEDs) of LBGs at $zsim3$, and analyse them with CIGALE SED-fitting analysis code. We are able to derive fully consistent physical parameters (M$_{*}$, $beta_{mathrm{UV}}$, $L_{mathrm{FUV}}$, $L_{mathrm{IR}}$, A$_{FUV}$, SFR, and slope of the dust attenuation law), and build a semi-empirical library of thirty rest-frame FUV-to-FIR stacked LBG SEDs as a function of $L_{mathrm{FUV}}$, $beta_{mathrm{UV}}$, and M$_{*}$. We used the so-called IR-excess ($IRX equiv L_{mathrm{IR}} / L_{mathrm{FUV}}$) to investigate the dust attenuation as a function of $beta_{mathrm{UV}}$ and M$_{*}$. Additionally, the SED-fitting analysis results provide a diversity of dust attenuation curve along the LBG sample, and their slope are well correlated with M$_{*}$. Stepper dust attenuations curves than Calzettis are favoured in low stellar mass LBGs ($log(M_{*} [M_{odot}]) < 10.25$), while grayer ones are favoured in high stellar mass LBGs ($log(M_{*} [M_{odot}]) > 10.25$).
83 - Uma P. Vijh , 2003
We present our analysis of UV attenuation by internal dust of a large sample (N=906 galaxies) of Lyman Break Galaxies (LBGs). Using spectral energy distributions (SEDs) from the PEGASE galaxy spectral evolution model we apply dust attenuation correct ions to the G-R colors using the Witt & Gordon (2000) models for radiative transfer in dusty galactic environments to arrive at the UV attenuation factors. We show that the dust in the LBGs exhibit SMC-like characteristics rather than MW-like, and that the dust geometry in these systems is most likely to be represented by a clumpy shell configuration. We show that the attenuation factor exhibits a pronounced dependence on the luminosity of the LBG, $a_{1600}propto (L/L_sun)^alpha$, where $0.5leqalphaleq1.5$. The exponent $alpha$ depends on the initial parameters of the stellar population chosen to model the galaxies and the dust properties. We find that the luminosity weighted average attenuation factor is likely to be in the range from $5.7-18.5$, which is consistent with the upper limits to the star formation rate at $2<z<4$ set by the FIR background. This implies that the current UV/optical surveys do detect the bulk of the star formation during the epoch $2<z<4$, but require substantial correction for internal dust attenuation.
297 - Masami Ouchi 2001
We study the luminosity function and the correlation function of about 1200 z~4 Lyman break galaxies (LBGs) with i<26 that are photometrically selected from deep BRi imaging data of a 618 arcmin^2 area in the Subaru/XMM-Newton Deep Field taken with S ubaru Prime Focus Camera. The contamination and completeness of our LBG sample are evaluated, on the basis of the Hubble Deep Field-North (HDF-N) objects, to be 17% and 45%, respectively. We derive the UV (rest 1700A) luminosity functions (LFs) and find a large population of UV-luminous galaxies at z~4. The LFs of the red and blue subsamples imply that the bright LBGs are redder in the UV continuum than the average color of the LBGs. Then we calculate the correlation function over theta = 2-1000 and find that it is fitted fairly well by a power law, omega(theta)=A_omega theta^(-0.8), with A_omega=0.71 +/- 0.26. We estimate the correlation length r_0 (in comoving units) of the two-point spatial correlation function xi(r) = (r/r_0)^(-1.8) to be r_0=2.7 +0.5/-0.6 h^(-1) Mpc (Omega_m=0.3 and Omega_Lambda=0.7). The correlation function shows an excess of omega (theta) on small scales (theta < 5), departing from the power-law fit at > 3 sigma significance level. Interpreting this as being due to galaxy mergers, we evaluate the fraction of galaxies undergoing mergers to be 3.0 +/- 0.9%, which is significantly smaller than those of galaxies at intermediate redshifts.
We make use of ALMA continuum observations of $15$ luminous Lyman-break galaxies at $z$$sim$$7$$-$$8$ to probe their dust-obscured star-formation. These observations are sensitive enough to probe to obscured SFRs of $20$ $M_{odot}$$/$$yr$ ($3sigma$). Six of the targeted galaxies show significant ($geq$$3$$sigma$) dust continuum detections, more than doubling the number of known dust-detected galaxies at $z$$>$$6.5$. Their IR luminosities range from $2.7$$times$$10^{11}$ $L_{odot}$ to $1.1$$times$$10^{12}$ $L_{odot}$, equivalent to obscured SFRs of $20$ to $105$ $M_{odot}$$/$$yr$. We use our results to quantify the correlation of the infrared excess IRX on the UV-continuum slope $beta_{UV}$ and stellar mass. Our results are most consistent with an SMC attenuation curve for intrinsic $UV$-slopes $beta_{UV,intr}$ of $-2.63$ and most consistent with an attenuation curve in-between SMC and Calzetti for $beta_{UV,intr}$ slopes of $-2.23$, assuming a dust temperature $T_d$ of $50$ K. Our fiducial IRX-stellar mass results at $z$$sim$$7$$-$$8$ are consistent with marginal evolution from $z$$sim$$0$. We then show how both results depend on $T_d$. For our six dust-detected sources, we estimate their dust masses and find that they are consistent with dust production from SNe if the dust destruction is low ($<$$90$%). Finally we determine the contribution of dust-obscured star formation to the star formation rate density for $UV$ luminous ($<$$-$$21.5$ mag: $gtrsim$$1.7$$L_{UV} ^*$) $z$$sim$$7$$-$$8$ galaxies, finding that the total SFR density at $z$$sim$$7$ and $z$$sim$$8$ from bright galaxies is $0.18_{-0.10}^{+0.08}$ dex and $0.20_{-0.09}^{+0.05}$ dex higher, respectively, i.e. $sim$$frac{1}{3}$ of the star formation in $gtrsim$$1.7$$L_{UV} ^*$ galaxies at $z$$sim$$7$$-$$8$ is obscured by dust.
289 - V. Gonzalez-Perez 2012
Using GALFORM, a semi-analytical model of galaxy formation in the Lambda cold dark matter cosmology, we study the rest-frame ultraviolet (UV) colours of Lyman-break galaxies (LBGs) in the redshift range 2.5 < z < 10. As the impact of dust on UV lumin osity can be dramatic, our model includes a self-consistent computation of dust attenuation based on a radiative transfer model. We find that intrinsically brighter galaxies suffer stronger dust attenuation than fainter ones, though the relation has a large scatter. The model predicts galaxies with UV colours consistent with the colour selection regions designed to select LBGs in observational surveys. We find that the drop-out technique that selects LBGs based on two rest-frame UV colours is robust and effective, selecting more than 70 per cent of UV bright galaxies at a given redshift. We investigate the impact on the predicted UV colours of varying selected model parameters. We find that the UV colours are most sensitive to the modelling of dust attenuation and in particular, to the extinction curve used in the radiative transfer calculation. If we assume a Milky Way dust extinction curve, the predicted UV continuum slopes are, in general, bluer than observed. However, we find that the opposite is true when using the Small Magellanic Cloud dust extinction curve. This demonstrates the strong dependence of UV colours on dust properties and highlights the inadequacy of using the UV continuum slope as a tracer of dust attenuation without any further knowledge of the galaxy inclination or dust characteristics in high redshift galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا