ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Progenitors of Local Group Novae. II. The Red Giant Nova Rate of M31

93   0   0.0 ( 0 )
 نشر من قبل Matt Darnley
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In our preceding paper, Liverpool Telescope data of M31 novae in eruption were used to facilitate a search for their progenitor systems within archival Hubble Space Telescope (HST) data, with the aim of detecting systems with red giant secondaries (RG-novae) or luminous accretion disks. From an input catalog of 38 spectroscopically confirmed novae with archival quiescent observations, likely progenitors were recovered for eleven systems. Here we present the results of the subsequent statistical analysis of the original survey, including possible biases associated with the survey and the M31 nova population in general. As part of this analysis we examine the distribution of optical decline times (t(2)) of M31 novae, how the likely bulge and disk nova distributions compare, and how the M31 t(2) distribution compares to that of the Milky Way. Using a detailed Monte Carlo simulation, we determine that 30 (+13/-10) percent of all M31 nova eruptions can be attributed to RG-nova systems, and at the 99 percent confidence level, >10 percent of all M31 novae are RG-novae. This is the first estimate of a RG-nova rate of an entire galaxy. Our results also imply that RG-novae in M31 are more likely to be associated with the M31 disk population than the bulge, indeed the results are consistent with all RG-novae residing in the disk. If this result is confirmed in other galaxies, it suggests any Type Ia supernovae that originate from RG-nova systems are more likely to be associated with younger populations, and may be rare in old stellar populations, such as early-type galaxies.



قيم البحث

اقرأ أيضاً

142 - S. C. Williams 2014
We report the results of a survey of M31 novae in quiescence. This is the first catalog of extragalactic systems in quiescence to be published, and contains data for 38 spectroscopically confirmed novae from 2006 to 2012. We used Liverpool Telescope (LT) images of each nova during eruption to define an accurate position for each system. These positions were then matched to archival Hubble Space Telescope (HST) images and we performed photometry on any resolved objects that were coincident with the eruption positions. The survey aimed to detect quiescent systems with red giant secondaries, as only these, along with a few systems with bright sub-giant secondaries, will be resolvable in the HST images. There are only a few confirmed examples of such red giant novae in our Galaxy, the majority of which are recurrent novae. However, we find a relatively high percentage of the nova eruptions in M31 may occur in systems containing red giant secondaries. Of the 38 systems in this catalog, 11 have a progenitor candidate whose probability of being a coincidental alignment is less than 5%. We show that, at the 3 sigma limit, up to only two of these eleven systems may be due to chance alignments, leading to an estimate of the M31 nova population with evolved secondaries of up to 24%, compared to the ~3% seen Galactically. Such an elevated proportion of nova systems with evolved secondaries may imply the presence of a much larger population of recurrent novae than previously thought. This would have considerable impact, particularly with regards their potential as Type Ia supernova progenitors.
Mass loss is an important activity for red supergiants (RSGs) which can influence their evolution and final fate. Previous estimations of mass loss rates (MLRs) of RSGs exhibit significant dispersion due to the difference in method and the incomplete ness of sample. With the improved quality and depth of the surveys including the UKIRT/WFCAM observation in near infrared, LGGS and PS1 in optical, a rather complete sample of RSGs is identified in M31 and M33 according to their brightness and colors. For about 2000 objects in either galaxy from this ever largest sample, the MLR is derived by fitting the observational optical-to-mid infrared spectral energy distribution (SED) with the DUSTY code of a 1-D dust radiative transfer model. The average MLR of RSGs is found to be around $2.0times10^{-5}{text{M}_odot}/text{yr}$ with a gas-to-dust ratio of 100, which yields a total contribution to the interstellar dust by RSGs of about $1.1times10^{-3}{text{M}_odot}/text{yr}$ in M31 and $6.0 times10^{-4}{text{M}_odot}/text{yr}$ in M33, a non-negligible source in comparison with evolved low-mass stars. The MLRs are divided into three types by the dust properties, i.e. amorphous silicate, amorphous carbon and optically thin, and the relations of MLR with stellar parameters, infrared flux and colors are discussed and compared with previous works for the silicate and carbon dust group respectively.
We present extensive datasets for a class of intermediate-luminosity optical transients known as luminous red novae (LRNe). They show double-peaked light curves, with an initial rapid luminosity rise to a blue peak (at -13 to -15 mag), which is follo wed by a longer-duration red peak that sometimes is attenuated, resembling a plateau. The progenitors of three of them (NGC4490-2011OT1, M101-2015OT1, and SNhunt248), likely relatively massive blue to yellow stars, were also observed in a pre-eruptive stage when their luminosity was slowly increasing. Early spectra obtained during the first peak show a blue continuum with superposed prominent narrow Balmer lines, with P Cygni profiles. Lines of Fe II are also clearly observed, mostly in emission. During the second peak, the spectral continuum becomes much redder, Halpha is barely detected, and a forest of narrow metal lines is observed in absorption. Very late-time spectra (~6 months after blue peak) show an extremely red spectral continuum, peaking in the infrared (IR) domain. Halpha is detected in pure emission at such late phases, along with broad absorption bands due to molecular overtones (such as TiO, VO). We discuss a few alternative scenarios for LRNe. Although major instabilities of single massive stars cannot be definitely ruled out, we favour a common envelope ejection in a close binary system, with possibly a final coalescence of the two stars. The similarity between LRNe and the outburst observed a few months before the explosion of the Type IIn SN 2011ht is also discussed.
201 - M. J. Darnley 2011
Of the approximately 400 known Galactic classical novae, only ten of them, the recurrent novae, have been seen to erupt more than once. At least eight of these recurrents are known to harbor evolved secondary stars, rather than the main sequence seco ndaries typical in classical novae. In this paper, we propose a new nova classification system, based solely on the evolutionary state of the secondary, and not (like the current schemes) based on the properties of the outbursts. Using archival optical and near-infrared photometric observations of a sample of thirty eight quiescent Galactic novae we show that the evolutionary state of the secondary star in a quiescent system can predicted and several objects are identified for follow-up observations; CI Aql, V2487 Oph, DI Lac and EU Sct.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا