ﻻ يوجد ملخص باللغة العربية
We report on a theoretical investigation of the interplay between vacuum fluctuations, Majorana quasiparticles (MQPs) and bound states in the continuum (BICs) by proposing a new venue for qubit storage.BICs emerge due to quantum interference processes as the Fano effect and, since such a mechanism is unbalanced, these states decay as regular into the continuum. Such fingerprints identify BICs in graphene as we have discussed in detail in Phys. Rev. B 92, 245107 and 045409 (2015). Here by considering two semi-infinite Kitaev chains within the topological phase, coupled to a quantum dot (QD) hybridized with leads, we show the emergence of a novel type of BICs, in which MQPs are trapped. As the MQPs of these chains far apart build a delocalized fermion and qubit, we identify that the decay of these BICs is not connected to Fano and it occurs when finite fluctuations are observed in the vacuum composed by electron pairs for this qubit. From the experimental point of view, we also show that vacuum fluctuations can be induced just by changing the chain-dot couplings from symmetric to asymmetric. Hence, we show how to perform the qubit storage within two delocalized BICs of MQPs and to access it when the vacuum fluctuates by means of a complete controllable way in quantum transport experiments.
We theoretically investigate a topological Kitaev chain connected to a double quantum-dot (QD) setup hybridized with metallic leads. In this system we observe the emergence of two striking phenomena: (i) a decrypted Majorana fermion (MF) qubit record
Majorana bound states appearing in 1-D $p$-wave superconductor ($cal{PWS}$) are found to result in exotic quantum holonomy of both eigenvalues and the eigenstates. Induced by a degeneracy hidden in complex Bloch vector space, Majorana states are iden
We report the formation of bound states in the continuum for Dirac-like fermions in structures composed by a trilayer graphene flake connected to nanoribbon leads. The existence of this kind of localized states can be proved by combining local densit
We propose a new setup for creating Majorana bound states in a two-dimensional electron gas Josephson junction. Our proposal relies exclusively on a supercurrent parallel to the junction as a mechanism of breaking time-reversal symmetry. We show that
We show theoretically that in the generic finite chemical potential situation, the clean superconducting spin-orbit-coupled nanowire has two distinct nontopological regimes as a function of Zeeman splitting (below the topological quantum phase transi