ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte-Carlo radiative transfer simulation of the circumstellar disk of the Herbig Ae star HD 144432

52   0   0.0 ( 0 )
 نشر من قبل Lei Chen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Studies of pre-transitional disks, with a gap region between the inner infrared-emitting region and the outer disk, are important to improving our understanding of disk evolution and planet formation. Previous infrared interferometric observations have shown hints of a gap region in the protoplanetary disk around the Herbig Ae star HD~144432. We study the dust distribution around this star with two-dimensional radiative transfer modeling. We compare the model predictions obtained via the Monte-Carlo radiative transfer code RADMC-3D with infrared interferometric observations and the {SED} of HD~144432. The best-fit model that we found consists of an inner optically thin component at $0.21enDash0.32~AU$ and an optically thick outer disk at $1.4enDash10~AU$. We also found an alternative model in which the inner sub-AU region consists of an optically thin and an optically thick component. Our modeling suggests an optically thin component exists in the inner sub-AU region, although an optically thick component may coexist in the same region. Our modeling also suggests a gap-like discontinuity in the disk of HD~144432.



قيم البحث

اقرأ أيضاً

The more massive counterparts of T Tauri stars, Herbig Ae/Be stars, are known to vary in a complex way with no variability mechanism clearly identified. We attempt to characterize the optical variability of HD~37806 (MWC 120) on time scales ranging b etween minutes and several years. A continuous, one-minute resolution, 21 day-long sequence of MOST (Microvariability & Oscillations of STars) satellite observations has been analyzed using wavelet, scalegram and dispersion analysis tools. The MOST data have been augmented by sparse observations over 9 seasons from ASAS (All Sky Automated Survey), by previously non-analyzed ESO (European Southern Observatory) data partly covering 3 seasons and by archival measurements dating back half a century ago. Mutually superimposed flares or accretion instabilities grow in size from about 0.0003 of the mean flux on a time scale of minutes to a peak-to-peak range of <~0.05 on a time scale of a few years. The resulting variability has properties of stochastic red noise, whose self-similar characteristics are very similar to those observed in cataclysmic binary stars, but with much longer characteristic time scales of hours to days (rather than minutes) and with amplitudes which appear to cease growing in size on time scales of tens of years. In addition to chaotic brightness variations combined with stochastic noise, the MOST data show a weakly defined cyclic signal with a period of about 1.5 days, which may correspond to the rotation of the star.
A new class of pre-main sequence objects has been recently identified as pre-transitional disks. They present near-infrared excess coupled to a flux deficit at about 10 microns and a rising mid-infrared and far-infrared spectrum. These features sugge st a disk structure with inner and outer dust components, separated by a dust-depleted region (or gap). We here report on the first interferometric observations of the disk around the Herbig Ae star HD 139614. Its infrared spectrum suggests a flared disk, and presents pre-transitional features,namely a substantial near-infrared excess accompanied by a dip around 6 microns and a rising mid-infrared part. In this framework, we performed a study of the spectral energy distribution (SED) and the mid-infrared VLTI/MIDI interferometric data to constrain thespatial structure of the inner dust disk region and assess its possibly multi-component structure. We based our work on a temperature-gradient disk model that includes dust opacity. While we could not reproduce the SED and interferometric visibilities with a one-component disk, a better agreement was obtained with a two-component disk model composed of an optically thin inner disk extending from 0.22 to 2.3 au, a gap, and an outer temperature-gradient disk starting at 5.6 au. Therefore, our modeling favors an extended and optically thin inner dust component and in principle rules out the possibility that the near-infrared excess originates only from a spatially confined region. Moreover, the outer disk is characterized by a very steep temperature profile and a temperature higher than 300 K at its inner edge. This suggests the existence of a warm component corresponding to a scenario where the inner edge of the outer disk is directly illuminated by the central star. This is an expected consequence of the presence of a gap, thus indicative of a pre-transitional structure.
318 - W.M. Liu 2003
We present mid-infrared nulling interferometric and direct imaging observations of the Herbig Ae star HD 100546 obtained with the Magellan I (Baade) 6.5 m telescope. The observations show resolved circumstellar emission at 10.3, 11.7, 12.5, 18.0, and 24.5 microns. Through the nulling observations (10.3, 11.7 and 12.5 microns), we detect a circumstellar disk, with an inclination of 45 +- 15 degrees with respect to a face-on disk, a semimajor axis position angle of 150 +- 10 degrees (E of N), and a spatial extent of about 25 AU. The direct images (18.0 and 24.5 microns) show evidence for cooler dust with a spatial extent of 30-40 AU from the star. The direct images also show evidence for an inclined disk with a similar position angle as the disk detected by nulling. This morphology is consistent with models in which a flared circumstellar disk dominates the emission. However, the similarity in relative disk size we derive for different wavelengths suggests that the disk may have a large inner gap, possibly cleared out by the formation of a giant protoplanet. The existence of a protoplanet in the system also provides a natural explanation for the observed difference between HD 100546 and other Herbig Ae stars.
The physical processes occurring within the inner few astronomical units of proto-planetary disks surrounding Herbig Ae stars are crucial to setting the environment in which the outer planet-forming disk evolves and put critical constraints on the pr ocesses of accretion and planet migration. We present the most complete published sample of high angular resolution H- and K-band observations of the stars HD 163296 and HD 190073, including 30 previously unpublished nights of observations of the former and 45 nights of the latter with the CHARA long-baseline interferometer, in addition to archival VLTI data. We confirm previous observations suggesting significant near-infrared emission originates within the putative dust evaporation front of HD 163296 and show this is the case for HD 190073 as well. The H- and K-band sizes are the same within $(3 pm 3)%$ for HD 163296 and within $(6 pm 10)%$ for HD 190073. The radial surface brightness profiles for both disks are remarkably Gaussian-like with little or no sign of the sharp edge expected for a dust evaporation front. Coupled with spectral energy distribution analysis, our direct measurements of the stellar flux component at H and K bands suggest that HD 190073 is much younger (<400 kyr) and more massive (~5.6 M$_odot$) than previously thought, mainly as a consequence of the new Gaia distance (891 pc).
MOST observations and model analysis of the Herbig Ae star HD 34282 (V1366 Ori) reveal {delta}-Scuti pulsations. 22 frequencies are observed, 10 of which confirm those previously identified by Amado et al. (2006), and 12 of which are newly discovered in this work. We show that the weighted-average frequency in each group fits the radial p-mode frequencies of viable models. We argue that the observed pulsation spectrum extends just to the edge to the acoustic cut-off frequency and show that this also is consistent with our best-fitting models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا